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The performance of digital communications over selective wide-sense-

*stationary uncorrelated-scatterin$ (WSSUS) fading channels is investigated.

*The emphasis is on the evaluation of the performance of binary differential

phase-shift keyed (DPSK) and binary frequency-shift keyed (FSK) communications

with primary emphasis on the effects of intetsymbol interference produced by

the frequency-selective character of WSSUS fading channels.

The error probabilities of DPSK and FSK are evaluated for several models

. of VSSUS frequency-selective fading channels. The analysis is focused on the

performance evaluation for hyleigh fading channels. The expressions for the

probability of error for these systems are formulated in a way that allows the

identification of the key parameters of the communication system.

The performances of DPSK and FSK are evaluated for several signaling

formats. The design parameters considered are the shapes of the basic data-

pulse waveforms for both DPSK and FSK, the modulation index, and the relative

phase between successive transmitted signals for FSK. It is shown that the

system error probability is highly dependent on these system parameters.

The interaction between the various elements of the communication system

is examined. We show that the average error probability can be approximated

in terms of one or two ras type channel measurements. A technique for
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obtaining bounds on system performance in terms of the key system and channel

parameters is described and applied to the evaluation of both DPSK and FSK

systems for several channel models and signaling formats. A method of

A approximating the performance of systems employing complicated pulse shapes

and channels which are difficult to fully characterize is discussed. It is

shown that the techniques for obtaining bounds and approximations for Rayleigh

channels are easily applied to the more general frequency-selective Rician

fading channels.
*1..

The applicability of adaptive equalization techniques to digital

communications over WSSUS frequency-selective fading channels is discussed.

We describe the characteristics of adaptive equalizers that are commonly

employed for fading-channel communications. It is found that adaptive

equalizers can be used to establish a coherent communications environment as

well as to reduce the effects of ISI. The results of cited simulation and

experimental studies are compared to the analytical results for the error

probabilities of the DPSK and FSI systems. We develop a method of obtaining

* estimates of adaptive equalizer performance for practical systems.
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.1 CHAPTER 1

INTRODUCTION

Several problems arise in the consideration of slow-frequency-hopped

(SIR) spread-spectrum communications which motivate the study of the

performance of digital communications over selective fading channels [1-4].

In many applications of SFK systems, the channel (or transmission medium)

S-cannot be adequately modeled as a non-dispersive additive white Gaussian noise

channel. In cases where the characteristics of the channel are significantly

different from this ideal, the channel is commonly referred to as a fading

channel. Fading channels may exhibit such undesirable properties as a time-

varying amplitude response, the spreading of transmitted signals in the

frequency domain (time-selectivity), and dispersion in time (frequency-

selectivity) which may produce significant intersymbol interference (ISI). In

cases where it is impractical to obtain accurate channel estimates and

incorporate these estimates in the detection process, the random character of

the fading channel precludes the use of coherent demodulation. Binary

differential phase-shift keying (DPSX) and frequency-shift keying (FSK) are of

4 "'particular interest for applications of SIH systems in selective fading

channels, since these forms of digital communications do not require the

receiver to establish phase coherence at the beginning of each hop [2,3,5].

The primary focus of this thesis is the evaluation of the average probability

" of error for DPSI and FSK communications in selective fading channels. The

., /analyses of these systems are of considerable importance independent of

applications to spread-spectrum communications. Furthermore, the results on

the average error probabilities for DPSK and FSK can also be used in the

performance evaluation of SIR systems (2-4].
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Previous analyses of various forms of digital communications over fading

channels which are selective only in time show that system performance

parameters such as signal-to-noise ratio and average error probability are not

significantly degraded unless the degree of time selectivity is quite large

[2,3,6-12]. When coupled with the measurements of the time-selectivity of

practical channels [7,131, these results indicate that the time-selective

nature of the channel is not a limiting factor for the performance of these

systems. In this thesis, we are primarily concerned with the effects of

intersymbol interference produced by the frequency-selective character of

fading channels. Thus, models of strictly frequency-selective channels are

used in the evaluation of the average probability of error.

Two common examples where fading phenomena are encountered in practice

aare ionospheric high-frequency "skywave" and tropospheric scatter channels

[6-8]. A channel model which accurately describes the characteristics of

these and other examples of fading environments is the wide-sense-stationary

uncorrelated-scattering (ISSUS) fading channel, which is discussed at length p,

.'. in [9] and [10]. This model is quite general and includes, for example, the

doubly-selective Rician channel as a special case.

Experimental investigations [8,14,15] of the multipath characteristics of

fading channels show that no one multipath model adequately describes the

properties of various frequency-selective channels encountered in practice.

These investigations also indicate that there are many situations where the

multipath parameters of the channel do not remain constant during the time

Arequired for transmission of a long data sequence. In Chapter 2, four

examples of multipath propagation models for WSSUS frequency-selective

* channels are described.

..
a. ~'aaI71
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In Chapters 3 and 4, we evaluate the average probabilites of error for

binary DPSK and FSK over WSSUS frequency-selective fading channels. The

analysis is focused on Rayleigh fading channels, since the adverse effects of

frequency-selective fading are most evident for such channels. The primary

goal of the analysis in Chapters 3 and 4 is to formulate expressions for the

system error probability that provide insight to the nature of the fading

mechanism. The expressions for the probability of error for these systems ar

developed in a way that allows the identification of the key parameters of tk

.4. communication system.

~'* \ One of the fundamental design parameters for DPSK systems is the shape of

the data-pulse waveform. Since the spectral characteristics of the

transmitted signal are largely determined by the properties of this waveform.

it is reasonable to expect that the performance of DPSK in a frequency-

selective fading environment is highly dependent on the choice of the pulse

waveform. For FSK communications, the character of the transmitted signal

depends on the frequency separation between the two FSK tones and the relative

phases between successive transmitted signals as well as the shape of the

.%
:~ *>data-pulse waveform. Previous investigations of DPSK and FSK over frequency-
-4

selective fading channels [2,516-18] indicate that the error probabilities

. are strongly dependent on these parameters.

We examine the interaction between the characteristics of the fading

channel, the transmitted signal, and the nonlinear detection that arises in

both DPSK and FSK demodulation. We show that in many cases of practical

interest, the performance of these systems can be approximated in terms of one

or two parameters which can be obtained from rms type channel measurements

7. (e.g., see [13]). It is found that the error probabilities for DPSK and FSK

41*.,

0
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depend on a number of common factors and that, in certain cases, the effects

of frequency selectivity on both DPSK and FSK systems can be characterized by

the same channel measurement. A technique for obtaining bounds on system

performance is described and applied to the evaluation of both DPSK and FSK

systems for several examples of channel models and signaling formats. We then

present a method for approximating the performance of systems employing

complicated pulse shapes and channels that are difficult to fully

characterize. By using the results of [19], it is shown that the techniques

for obtaining bounds and approximations for Rayleigh channels can easily be

applied to the more general frequency-selective Rician fading channels.

In many practical systems, the effects of intersymbol interference (ISI)

in a frequency-selective fading channel can severely limit the performance of

conventional digital communications. For a number of years, considerable

attention has been given to adaptive signal processing or "equalization"

techniques for digital communications over certain non-fading channels [20-

21]. For channels of this type, such as telephone lines and line-of-sight -

(LOS) microwave links, both linear and nonlinear equalizers (typically in the

configuration of tapped-delay-line (TDL) filters) have been used effectively

to reduce the effects of ISI [22]. More recently, there has been considerable

interest in applications of similar equalization techniques to improve the

performance of digital communications over WSSUS frequency-selective fading.

channels [23]. While the random character of fading channels presents a

number of additional difficulties which must be overcome, both simulation

studies [24] and experimental evidence (14] indicate that reliable

communications can be achieved even in fading environments that produce _

unacceptably high error probabilities for unequalized systems.

U..



In Chapter 5, we describe adaptive equalizers that are commonly employed

for fading-channel communications. It is found that the main attributes of

adaptive equalizers are the reduction of the effects of ISI and the ability to

establish coherent communications. We briefly discuss the results of several

S simulation studies and experimental investigations. These results are

compared to the results presented in Chapters 3 and 4. By examining the basic

- properties of TDL equalizers, we develop a method of obtaining estimates of

adaptive equalizer performance for practical systems.
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CHAPTER 2

o.

CHANNEL MODELS

In this chapter, we discuss the key characteristics of the wide-sense-

stationary uncorrelated-scattering iWSSUS) fading channel model used in the

performance evaluation of the communication systems discussed in subsequent

chapters. This channel model is described in detail in [9] and is employed in

the analysis of a variety of digital communication systems in

[2.5.9,11,16,17,24,25].

We employ narrowband signal models (see [6]) so that if the input to the

channel is

7(t) = Re(s(t)exp(j2rfct)) , (2.1)

then the output is given by

i(t)-= Re(r(t)ezp(j2xfct)) , (2.2)

where

r(t) =.cs(t) + h(t,W)s(t-4) dt + n(t) , (2.3)

and n(t) is the equivalent (see [11]) low-pass Gaussian noise with (one-sided)

spectral intensity NO. For the general case of Rician fading, the received

signal r(t) consists of three components: a single specular component, a

diffuse or Rayleigh-faded component, and the channel noise. The fading

process is characterized by the ensemble autocovariance of the response

function h(t,4),

E(h(t,v)hx,4)) = 2o2p(t-x,4)&(c-) , (2.4)

where 60(.) is the Dirac delta function and 2a2 is the total power in the

. ',
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2"j' ~-fading process, so that p(0,C) dC 1. Alternatively, the quantity a can

be interpreted as the average power received when a (real) sinusoid of unity

peak value is transmitted over the channel.

If u ) 0 in (2.1), there is a specular (non-faded) component present in

the channel output. In this case the channel is termed a Rician fading

channel (as in (12,19]). If a = 0, there is no specular component in the

received signal and the channel is a Rayleigh fading channel as is considered

* .in [2.5,11,16,171. The autocovariance function in (2.4) represents the

second-order statistics of a channel that is selective in both time and

frequency (i.e., doubly selective). Doubly selective channels are the most

general examples in the class of WSSUS fading channels [9].

The effects of time-selective fading on DPSK communications are

considered in (3] for several data pulse shapes and a variety of fading

channel models. In [11], the performance of binary FSK communication via

- .. ~time-selective fading channels is calculated for one example of a fading

channel. In each case the performance is evaluated as a function of

parameters related to the bandwidth of the Doppler power density spectrum

[11]. While it is probably true that most fading channels are time-selective

to some degree, it is also true that, for a given fading channel, the

.• .. normalized Doppler spread (see [3]) decreases with increasing channel data

rate. Moreover, the results in [11] and [3], when coupled with measured

Doppler spreads for typical channels [7],[13], indicate that the time-

selective nature of the channel is not a limiting factor in determining the

performance of practical systems. In the analyses that follow, we consider

.I1 wchannels that are selective only in frequency, i.e., that are strictly

.. :i frequency-selective.

'-"



For strictly frequency-selective fading channels, the autocovariance

function (2.4) of the fading process becomes [91

2a2 p(t-xC)6(-C) 2og( )8(l-4) ( (2.5)

where g() is the delay Dower-density spectrum of the fading process. The

inverse Fourier transform of Sl() is called the frequency correlation function

[9] and is given by

G(Q) - j g(Q)e j 2x dt . (2.6)

-m.

There are several ways in which the degree of frequency-selectivity can

be specified. One is to define the selectivity as the "bandwidth" of the

frequency correlation function G(O). For example, in [16] and [17], the

distance between the "1/e" points of G(Q) is used as a measure of frequency- 2.

selectivity. Alternatively, the degree of selectivity can be defined in terms

of the delay power-density spectrum S(Q).

In any physical channel the transmitted signal undergoes a propagation

delay vd (say) which, for the analyses of non-selective or non-fading

channels, is usually assumed to be a known deterministic quantity that is

compensated for at the receiver. In the case of frequency-selective channels,

the transmitted signal may experience a continuum of random propagation

delays, with mean value Cd given by

4 Cg(Q) d4 (2.7)

which is referred to as the mean path delay. A parameter that is commonly

used to specify the selectivity of the channel in terms of relative delay is

the "multipath spread" [5] which is defined by

, ,': ;:2fi. ¢,g¢;; ; 2 ; ¢; ¢; ': :.'*,',,: .2. : ,' , ' '. .,' .". . , ," . -.-. .. .. , .. • .. • ... .. .'.... .:."
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".s. = 2( k 1 - d)2g( ) dt)1/ 2  (2.8)

ip.
(see (13], where techniques for measuring this channel parameter are

discussed).

We are concerned with relative delays only and we assume that the

"" receiver has compensated for the mean path delay td. Equivalently, we let d

- : - 0 in order to establish a time reference. Parameters that are used in the

sequel to specify the degree of frequency-selectivity are the _Mj delay.* -,
(L (2.81C1 dt}1 /2  (2.9)

hd which is equal to half the spread parameter defined in [5] and the rns

multinath syread, defined by p = M/T, where T is the data symbol duration.

This latter parameter is related to the normalized data rate [16,17], since it

is a function of the ratio of the transmitted data rate and the channel

4 - correlation bandwidth.

Since the delay power-density spectrum, g1Q) in (2.5) (and hence the

function p(0,C) in (2.4)) can be viewed as the Fourier transform of the

correlation function G(M) in (2.6). it is necessarily a nonnegative. real-

* valued function. We also assume that g() is symmetric, i.e., 8(t) = g(-4).

cc This assumption can be made without loss of generality since we consider only

symmetric binary signaling, and the average probability of error depends on

, the fading channel model only through an ensemble average (2.4) of the channel

statistics.4 ".

In the analysis that follows, the evaluation of the average probability "
of error for DPSK and FSK is considered for four examples of delay power-

density spectra: the Gaussian, exponential, triangular and rectangular delay

. . . .... 
....... . .o , #
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densities. The Gaussian delay power-density spectrum is given by

e-2/2u2
g1 1 C 1 e (2.10)

with corresponding frequency correlation function

"G() - ( (2.11)

The parameter M in (2.10) and (2.11) is the ras delay given by (2.9). The

exponential delay power-density spectrum is given by

, 2 J(. ( 2.12)""

and the corresponding frequency correlation function is

G(Q) = (1 + 2(ffM) 2)-1 . (2.13)

The triangular delay spectrum, which was employed in [41 and [18] for the

analysis of a slow-frequency-hopped FSK multiple-access system, is given by

- ITO,

S(,) 0 (2.14)

0 otherwise

The frequency correlation function for the triangular spectrum is

4 2G(O) - sinc (OT0) , (2.15) "'

where sinc(z) - sin(xz)/(x); and the rus delay is given by M = TO/ '7. The
rectangular delay power-density spectrum is given by

• ~ *% *: . -:'* , -- . ] I
4

%



%o . .. 11

() ( 2.16)

0 otherwise

with corresponding frequency correlation function

G(R) - sinc(2oT0 ) , (2.17)

where K - TO/4F.

I For a general frequency-selective channel, the detection of a given

information bit may depend on a number of consecutive data pulses, because of

intersymbol interference (ISI). Although the analysis presented below is

' easily extended to include more severe intersymbol interference, we assume as

in (5,16,17] that the degree of frequency-selective fading is small enough

5 that the intersymbol interference affects only adjacent data pulses; this is

satisfied if p(t-i,) w 0 for iI ) T (cf. (2.4)). In this case, the channel

is referred to as an adjiaent-pulse-lmited ISI channel. This assumption is

made for two reasons. If the intersymbol interference is not limited to

adjacent data pulses, it is much more difficult to formulate tractable

expressions for the system error probability. Second, for all models of the

delay power-density spectra considered here, the complementary assumption

implies that the resulting average probability of error is unacceptably large.

Our assumption of adjacent-pulse-limited ISI places a restriction on the

maximum value of the rms delay. In particular, if we require that at least

90% of the total energy of the delay spectrum lies within the range

[-T 1 TI for the Gaussian delay density, (i.e., if we require that in the

absence of additive noise, less than 10% of the energy received in the

interval (i-l)T, iT] is due to pulses transmitted outside the interval
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[(i-2)T,(i+1)T]), then we must have

- < 0.43

where p is the rms multipath spread. For the exponential delay power-density

spectrum the requirement that 90% of the total energy of the delay spectrum is

within the range [-T j _ T] implies that the rms multipath spread satisfies

p ( 0.62I n( .11

, N,

In the case of a triangular delay spectrum, intersymbol interference is

completely limited to adjacent pulses if

2 T
6T

Finally, it is easy to see that intersymbol interference for the rectangular

spectrum is limited to adjacent pulses if

2'TA 3T 1 113.-

In the analysis that follows, we show that the "shape" of the delay

power-density spectrum (as well as the rms multipath spread) can have

considerable influence on the error probability of both differentially

coherent and noncoherent communications.

4-,

,,4'
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CHEAPTER 3

.PERFORMANCE OF BINARY DPSK COMMUNICATIONS
tA

OVER FREQUENCY-SELECTIVE FADING CHANNELS

In this chapter, we consider the evaluation of the average probability of

p error for binary DPSK communications over wide-sense-stationary uncorrelated-

scattering frequency-selective fading channels. In what follows, we primarily

consider the performance of DPSK over WSSUS frequency-selective Rayleigh

4 fading channels. It is in this case that the adverse effects of frequency-

selective fading and the dependence of system performance on the channel delay

power-density spectrum is most evident.

The dependence of the error probability for Rayleigh fading on the shape

. -of the data-pulse waveform used as the DPSK signal has been considered in

[5,16,17]. In particular, the rectangular pulse as well as the sine pulse,

which is the basic pulse shape for minimum-shift-keying (MSK) modulation, is

L1 considered in [5] where the average probability of error is obtained for the

i" , Gaussian, exponential, triangular, and rectangular delay power-density

spectrum models. The result for DPSK using the rectangular pulse for a

V '1 Gaussian delay spectrum has been previously obtained by Bello and Nelin [17]

_ Iand by Bailey and Lindenlaub [16]. In [16], the authors also consider the

rectangular pulse and the raised-cosine-spectrum pulse for a rectangular delay

7power-density spectrum.
4.'

A number of conclusions may be drawn from these results:

i) For all models of delay power-density spectra considered, significant

% gains in performance can be achieved by proper choice of pulse shape.

.5 .~
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ii) Closed-form expressions for the average probability of error can be

unwieldy even for the simplest pulse shapes because of the quadratic

nature of interference inherent in differential detection in a

frequency-selective environment.

iii) Depending on the data pulse and the choice of normalization for multipath

spread, the error probability can be very sensitive to the parameters of

the fading channel, i.e., delay power-density spectrum.

The first observation indicates that the error probability of DPS[ in

frequency-selective fading channel can be substantially reduced by a judicious

choice of pulse wavefor. Unfortunately, the latter observations Suggest that A

identification of a "good" pulse shape is, at best, analytically cumbersome

and dependent on a number of channel and system parameters (as indicated by

the complicated form of the results in [5.16,17]). Moreover, it is not

*. % necessarily true that analyses of this type provide a reasonable indication of

the performance for a physical channel unless an exact mathematical

description of the channel is available. This is especially unfortunate since

a complete characterization may not be possible [13], and for many practical

channels, the characteristics are not likely to remain constant during the

time required for transmission of a long data sequence (9]. Hence, it is

possible that several statistical models could be used to describe the same

frequency-selective Rayleigh channel for repeated transmissions.

In this chapter. we show that the performance of DPSK communications over

frequency-selective Rayleigh fading channels can be closely approximated in

terms of one or two parameters which can be obtained from rms-type channel

measurements. A technique for obtaining bounds on system performance in terms of

of the key channel parameters is described. We present a method for
[6. q
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approximating the performance of systems employing complicated pulse shapes

S K and channels that are difficult to characterize fully. Finally, it is shown

using the results of [19], that our results on bounds and approximations of

the probability of error for Rayleigh channels can be applied to the more

..5 general case of frequency-selective Rician fading channels.

3.1 System Model

The system consists of an information source, a DPSK transmitter, and a

differentially coherent receiver. The information to be transmitted is

modeled as a sequence (b of mutually independent random variables, each

taking values 0 or 1 with equal probability. The binary data sequence (bi),

.. . with elements in (-1,11, is formed by differentially encoding the information

sequence (bi) Thus, (bi) is a sequence of mutually independent random£ variables, each taking on the values -1 and +1 with equal probability. The

data signal is given by

_.4,

b~t)= bv(t-iT)

for each integer i. The data pulse-waveform v(t) is assumed to be time

. limited to the interval [0,T] such that

'S.. .-

S~V - Jvt 2 dt =1

% thus for each integer i, the data signal is a positive or negative version of

the basic pulse shape v(t). The transmitted signal 1(t) is given by (2.1)

with s(t) defined by

C. , •

[ .qq. *,..
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-(t) = b(t) ( (3.1)

where E is the energy per data bit of the transmitted signal.

In the present analysis, three examples of the pulse waveform v(t) are

considered. These are the rectangular pulse

( 1- 0 _ t <T
v(t) =PTt) (3.2)

0, otherwise

the sine pulse,

v(t) V2 sinlt/T)PT(t) ( (3.3)

and the rectangular phase-coded pulse [26] given by"-.

,b.,. vMt 2 ai PT (t-iTc) 3.4) ".

1-i0 c

for 0 t T. The sequence (ad , referred to as the signature sequence, is a

sequence of elements of (+1.-i). The chip duration T is related to T by'* C

T = NTc where N is the integer number of chips per data pulse. The sine pulse

in (3.3) is the basic waveform used for minimum-shift-keying systems while the

phase-coded pulse is referred to as the spectral-spreading signal in direct-

, sequence (DS) or code-division spread-spectrum multiple-access (SSMA)

communications (26-29] and hybrid SFH/DS SSMA [4].

VThe DPSK receiver is the differentially coherent matched filter receiver

shown in Fig. 3.1. At the end of the i-th data-pulse interval the receiver -

forms the decision statistic Z i represented (in terms of narrowband models) by

Z i  2Re 4 iT r(t)v*(t)dt f r (t)v(t)dt

T( i-l)T -

SUVe + UOV (3.5)

IL- 14

4* j~W% *4 ~. ~. * -..* ,. ,.* +
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where

.U- 2 (i+l)T .

U = 2 Ji+T r(t)v t) dt (3.6a)
- . %iT

jiT
V 2 r(t)v*(t) dt . (3.6b)

(i-1)T

Notice from (3.5) that the statistic Z. is expressed as a quadratic form of
1

complex Gaussian random variables U and V.

*Under the assumption that p(t-x,4) o 0; > I ) T, i.e., adjacent-pulse-

limited ISI. the output statistic Z i depends on at most four consecutive data

bits represented by hi = (bi_2, bi_1, bi, bi+,) and the probability of error

can be written in terms of probabilities conditioned on the event that certain

sequences of data bits were transmitted, i.e.,

-- PC - 1q "Pbi) ,(3.7) X.
p16

,. where P(ki) = Pr (error occurs~bi transmitted). In [11,17] Bello and Nelin

show that these conditional error probabilities are given by

P(bi) (2 + y(bi))-I  (3.8)

where y(.) is the "equivalent" signal-to-noise ratio, which may be written in

terms of the conditional moments 'xy(bi) = E(Xy*1bi}_of the random variables U ''

and V as

S.)bi-i = bi

"luu(ki)mvv(ki) - mUV( i) 
- b

i)  -2m Ui bi-,(3.9)

1.'. u(kt) MW (ki ) + .UV(b i)

~.

#4 --- " "
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Using (2.5) and (3.6), the necessary moments are written as

2 i+( [i+1)T T

MUU(bi) = 8a 2iT f(i+l)T p(t-x,4)s(t-)v (t)s (x-4)v(x) d~dxdt

+ 8NoT (3.10a)

and

(i+1)T iT
b = 82 f J 3 p(t-z ) s(t-*)v(t)s* (z-)v(x) dtdxdt.(3.10b)

iT (i-1)T -T

The moment mVV(bi) is defined similarly to mu(b i ) with the region of

integration of the outer two integrals given by [(i-1)T,iT], and mvu(b.i)

By substituting &(.) for p(...) in (3.10) and using the assumption that g

is symmetric, the moments needed to evaluate ((bi) are found to be

- tmUU (hi) = 2°-- E[v + inv + (bi-lbi + bibi+l)-nv] + 8NoT, (3.11a)

= 32o2 E
"avvlbi) T II[ v + IV + (bi-2bi-l + bi-lbi)n ] + 8NoT, (3.11b)

and

= 16 2 E 2b b + (b b + b+b +

T

+ (2 + b 2bi + b b )i ] , (3.11c)

where

= T g()Rv(Q) dt, (3.12a)

A 3 g(Q)R 2(4) dt, (3.12b)
V 0

and

'~~ SQ v =  ()Rv(Q) Rv(Q) dt (3.120)
: 0

* T •_, ° o .•~ -"- o"•-,.. .o•• ••- . . .. . .
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whore the parameters R() and Rv(Q) are defined in (3.14). By eamnn

(3.9) and (3.11). it is easy to see that y(~i) exhibits certain symmetry

relations in terms of the data pulse sequence _b. Making use of these

properties, P in (3.7) can be reduced to

Pe= ((l+1-,1 + P(+l,+1,-l,-1) + 2(l+,l-1

+ P(-1,+1,+1,-1) + P(+l.+l+.+,1) + 2P(-lo+l.+l.+1)]. (3.13)

The functions R (. and R (.) in (3.12). which are the usual continuous-

time aperiodic autocorrelation functions [26,27] for time-limited signals,

depend only on the pulse waveform v(t). They are defined by

= Q) v(t) v(t-4) dt (3.14a)

and

R(VQ) = 0 v(t) v(t+T-4) dt (3.14b)

for 0 . < T. These functions are easily evaluated for the first two pulse

shapes. They are found (27] to be

R =Q T (3.15a)

and

K.R() (3.15b)

for the rectangular pulse, and they are given by

R() (T-4)cos(n4/T) + (T/n)sin(n4/T) (3.16a)

and

Vo V)- - cos~ffg/T) +- (T/g)sin(ff4/T) (3.16b)
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for the sine pulse. The autocorrelation functions R(.) and Rv (.) for the

phase-coded pulse (3.4) are given for 0 < kTc < ( (k+l)Tc j< T by

R( ) : Ca(k)((k+l)Tc - ) + Ca(k+ll(Q - kT0 ) (3.17a)

and

R( ) v Ca(N-k)((k+l)Tc - 4) + Ca(N-k-ll(" - kTc ) (3.17b)

where C is the discrete aperiodic autocorrelation function for the sequencea

(a.) of length N defined in [26] by

a. N-i-k

",* S"i= aiai+k, 0 < k < N-i
i=0 ~k

N-l+k
. Ca(k) i "0 ai-kai '  i-N < k < 0

0;: , I kl>_N .

This function C is considered in [26-29] and many of its properties are given. a

in [30]. In what follows, it is shown that the performance of the phase-coded

pulse depends on the correlation properties of the signature sequence (a) as

.:well as other system characteristics discussed earlier. Notice that the

simple rectangular pulse (3.2) is obtained as a special case of (3.4) for any

N 1 1 by letting a. = +1 for all i C [0, ..., N-i. We would also point out

that the approximation [2,31 of the average error probability for SFH/SSMA in

:* terms of the hopping pattern parameters and the probability of error given

-'7. there are no hits does not generally apply to phase-coded pulse waveforms.

Indeed, the principal reasons for considering this class of pulse shapes for

coherent PSK systems include increased multiple-access capability [4,26-291

and immunity to the interference effects caused by multiple and/or diffuse

" '', . . o- %-. . ,, -,*.- .': -. -,. -.. . .. . . q , ,, .. . . .- .. -. . . . . . . . . . . ., ,... .,.,' .,.,, ., ,,.. ', o ,, ,., ., ,,..' , , ,,',,.*'. ' ,. ,.. :' ,.,'- .' .'. ,,, ... . . ,
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propagation paths [12,31]. Since, at present, there is no evidence to the

contrary, one would expect similar gains to be realized in differentially

coherent systems. Hence, a proper analysis of differentially coherent hybrid

slow-frequency-hopped direct-sequence SSMA would be influenced by these

characteristics.

VI: Notice that the moments necessary to specify the average probability of

error depend on the pulse shape and the delay power-density spectrum only

%0 through the integral expressions (3.12). Thus, the average probability of

error is easily obtained once these three basic integrals are evaluated. In

[5] closed-form expressions for the integrals in (3.12) are obtained for the

rectangular and sine pulses, and for the four examples of delay spectra

discussed in Chapter 2.

From (3.9) and (3.11) it is clear that the probability of error P for a

WSSUS frequency-selective fading channel depends on a number of system and

channel parameters. In order to evaluate the effect of the fading process, it

is instructive to first consider a limiting case in which the additive channel I

noise is neglected. In particular, Fig. 3.2 shows P as a function of the
e

signal-to-noise ratio S = 2aE/N0 , which is the ratio of the average energy'9., ..-.

per data pulse of the received signal to the real noise power spectral density

N0/2. The rectangular pulse waveform and the Gaussian model for the delay

'. power-density spectrum with rms multipath spread p = 0.05 is assumed for this

example. Also shown in Fig. 3.2 is P the error probability for DPS[ in ans •

: ..P 1nonselective Rayleigh fading channel, which is [6, Eq. 9-5-25],

Pns w (2 + 4(2 E/N0) 1  ( (3.18)

Notice that when the signal-to-noise ratio S is small, the average probability

4, p.

.. . . .- -. - . . .- ,. ... .. ..,.. .. ... .. . ,. ..- . .- .-. .. . .. -. . .. . - .. . . . .. ,. -,. . . , ,._ . . , -. . .'. .. ,
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of error is well approximated by Pns" This is because at low signal-to-noise

ratios, the decision errors are largely due to additive Gaussian noise rather

than intersymbol interference.

For large signal-to-noise ratios, the errors caused by the effects of

intersymbol interference dominate; the average error probability approaches a

limiting error probability PI as S -> a. This limiting error probability is

known as the irreducible error probability for the frequency-selective WSSUS

Rayleigh fading channel [5,16,17]. For large signal-to-noise ratios, the

irreducible error probability is a good (although pessimistic) estimate of the

average probability of error. If PI and Pns are known, we can obtain a good

approximation to the average probability of error for both large and small

signal-to-noise ratios. Moreover, P, alone is a useful indication of

performance for practical systems since it is a lower bound on P for all
e

signal-to-noise ratios and a good estimate of P for high signal-to-noise

ratios.

In [5] the results of numerical evaluations of P= AeIS- are given

for the rectangular and sine pulses and the four delay power-density spectra

discussed above. The parameter d, given by

d y I .~) d (3.19) .-

is used as a basis for comparing the system performance for the various
.4..

channel models. This parameter is just twice the rms multipath spread p M/T

where M is the rms delay given by (2.9).

In Fig. 3.3, the irreducible error probabilities PI are shown as a

function of the rms multipath spread p for the various combinations of basic

*pulse shapes and delay power-density spectra mentioned above. The values of

~~~ ~~. ........ . . . . ... ""-" "-"•. I• ".%" ''%
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P, for the phase-coded pulse are calculated by standard numerical integration

techniques. The signature sequence used for this waveform is an m-sequence of

length N = 31 in its characteristic phase (see definition and Fig. 7 in [32]).

Unless stated otherwise, comparisons between irreducible error probabilities

are always made with respect to a fixed value of rms multipath spread.

Notice that while the irreducible error probabilities for the rectangular

and sine pulse are "well-behaved" functions of the rms multipath spread, the

limiting error probability for the phase-coded pulse varies in a more erratic

way making a relative evaluation of the effects of intersymbol interference

difficult. In the next section, we show that such erratic behavior is

characteristic of the irreducible error probability for phase-coded pulses

when r-sequences (or any binary sequences that produce large time-bandwidth

product signals) are used as signature sequences. These results do, however,

indicate that rectangular pulse DPSK exhibits small variations in the

~.5 irreducible error probability with respect to changes in the model for the

delay power-density spectrum. In contrast, the irreducible error

probabilities for systems employing the sine pulse and the phase-coded pulse

vary by more than a factor of 10. In the next section, it is shown that this

apparent insensitivity of the rectangular pulse to changes in the shape of the

delay-spectrum is due primarily to the choice of delay-spread normalization

rather than any inherent properties of the pulse itself. For example, if the
"',.

normalization is defined in terms of the "l/e points" of the corresponding

frequency correlation function G(G), as in (16,17], the irreducible error

probabilities for the rectangular pulse vary by a factor of four. In the next

section, we examine the implications of the choice of normalization on the

evaluation of the irreducible and average error probabilities.

I. ",
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" ~3.2 Performance Bound_snd Approximations

2In order to gain a better understanding of the relationships between data

°'.

pulse shapes, models for the delay power-density spectrum, the signal-to-noise

ratio, and other system design parameters, it is useful to examine the

frequency-selective fading mechanism from a "cause-and-effect" point of view.

In this section. we investigate the influence of the fading process on the
* .s

average error probability by separately considering the effects of WSSUS

frequency-selective fading in the time domain (or delay domain) and in the

" Fourier transform or frequency domain. It is true. of course, that these

representations each merely describe the same fading mechanism from different

points of view. However, the separate consideration of these two effects

J provides insight to the causes of degradation of system performance inherent

in a frequency-selective environment. Moreover, investigating the fading

* characteristics in this way aids in the identification of the nature of the

fundamental trade-offs between the key system parameters. In the remainder of

this section, we first consider the characterization of frequency-selective

fading in the delay domain and identify the key parameters for determining the

effects of intersymbol interference. (In all that follows, we assume that the

delay density g() is symmetric.) We then focus on the frequency-domain

-characterization and identify the sy'stem parameters that provide an indication

of performance degradation due to additive noise.

3 3.2.1 Effects of Intersymbol Interference: Characterization
"s

\ .Consider the detection of an information bit corresponding to the data-

bit pair (bobl), If we ignore the contributions of the desired signal as

*J well as the additive noise and only consider the effects of intersymbol

"I " ,, " . ." "
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interference resulting from positive (relative) propagation delays, the

decision statistic Z= UVe + U V with the random variables U and V given by

U 2 t-T) h(t-T.) (b~vt-4)d~dt (3.20a)
p..T '0

and

V 'f-.V 2 Vt h(t.) bv(t+T-)dtdt . (3.20b)

Using (2.4). (2.5) and (3.20), the moments necessary for the evaluation

of the average probability of error are found as

16a E
UU MU = mw = (3.21a)

and

UV - b-lb 0 'v " (3.21b)

T

Under the assumption that the delay power-density spectrum g() is symmetric,

it is easy to see that identical expressions result from the consideration of

the effects of intersymbol interference produced by negative values of

relative delay (with a change of data-bit indices in (3.21b)). Alternatively,

if we consider the matched filter output for both positive and negative

relative delays when b. = (+l.+.+l,+l), the moments in (3.11) are found to be

2. 2,Y16a 2 E  -16o'2E '

yU V mU = -- 2 [nv + nv + 2.] = _,HV (3.22)" T T

so that in the absence of additive noise, (3.22) represents the total "power"

at the filter output due to the transmitted signal with no data modulation.

Thus. 2q v + v + 21) - 21v/Hv represents the portion of filter output

due to interfering signals relative to the total output. Hence, the parameter

.*.*.. .. .. .. ."" ,..... . ... -' ." . . . .. ". . *..' . . .*.: .. ,, ' . ' .- ", . -".," ""+ ', , -.".".J"-:".i,,:+. "'+", " .*;*-5,. .. . . . .. .. .-... . . . . . . . ." " " " . . " ' " "
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1 .V/Hv provides a characterization of the effects of intersymbol interference

.U on DPSK communications in frequency-selective fading.

From the discussion in Section 3.1 it is apparent that the parameter most

indicative of the effects of intersymbol interference is the irreducible error

. probability PI* Hence we would expect that if the delay-spread is normalized

with respect to 2q /Hv P the limiting error probability PI should exhibit

*'. : minimal sensitivity to the actual shape of the delay power-density spectrum

- .. . g(). In particular, notice that, under the assumption of adjacent-pulse-

limited ISI, the rms multipath spread can be written as

T
A". I g( )R ( ) dt1

/ 2

I. "" ' ll --1 r /

"/T { 2 , (3.23)

, since H = 12 for the rectangular pulse, where Rr() = Rv() is given by

S (3.15). (The subscript "r" denotes the rectangular pulse.) Thus, it is not

'surprising that the normalized rms multipath spread pr provides an effective

,- normalization of the various delay spectra for the rectangular pulse as

suggested by the results in Fig. 3.3.

Similarly, we define the normalized rms multipath spread g s for the sine

pulse by

=bb s 2 g()R (Q) dC} I1 2

vi) /2, (3.24)

with R sW = ( ) given by H3.16b). In Table 3.1, numerical values of Hs/T 2

Sare listed for the four examples of delay power-density spectra discussed in
r\.'- ".

N.~ -~



7-,7-7 7 7.M-V

30

..-

Table 3.1. Hs/T2 for sine pulse DPSK with respect to the rms delay M

M/T Gauss Exp Tri Rect

0.005 1.0 1.0 1.0 1.0

0.01 0.999 0.999 0.999 0.999

0.05 0.9784 0.9796 0.9781 0.9778

0.1 0.9275 0.9356 0.9253 0.9223

0.5 0.6394 0.6813 0.6812 0.6304

b .. %-

h.' '",*

.,.

• ._'0
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Chapter 2 and various values of rms delay M. It is easy to see that Hs/T 2  >

3 0.6 for all values of rms delay, and that H is not very sensitive to the

shape of the delay spectra. Moreover, H for all practical values of rms
5

- delay so that qs alone provides a good indication of the effects of

intersymbol interference for the sine-pulse.

Finally, the normalized rms multipath spread p for the phase-coded pulse

is given by

p 0

.~I

",'/~~~ ~ 1/2(gl) {)d) /

= 2 1 (3.25)

H p

with R = Rv(4) given by (3.17b). The values of Hp/T 2 for the r-sequence

of length N = 31 are listed in Table 3.2 as a function of the rms delay M.

-. In contrast to the results for the rectangular and sine pulse, the

,: :.:. parameter H is very sensitive to the shape of the delay spectrum and can be
p

much smaller than T2 for relatively small values of rms delay. This is true

for two reasons. The parameter q can be substantially smaller than the

corresponding parameters for either the rectangular or sine pulse; this fact

has profound implications on the performance of phase-coded pulse waveforms in

the presence of additive noise. Using the propertibs of the discrete periodic

autocorrelation function for m-sequences [30], it is easy to show that i'

given by (3.12c) is never positive. In fact, depending on the shape of the

*'I -:. delay density, the negative contribution of 21' can be nearly as large as the

sum of and TP. This is in sharp contrast to the analogous situation for

_ j the rectangular and sine pulse where qv' is non-negative and generally much

smaller than qv

Nv
:. .2 ,v' ., . .... ,:' .. ,.•,.. . ., '' . '..., ;,: / ' .'','- . .
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Table 3.2. H/T 2 for phase-coded pulse DPSK (N 31) with respect to the rms
p

delay K

M/T Gauss Exp Tri Rect

0.001 0.9446 0.9741 0.9488 0.9456

0.005 0.7703 0.7994 0.7643 0.7485

0.01 0.5917 0.6487 0.5798 0.5481

0.05 0.1636 0.2400 0.1598 0.1209

0.1 0.0835 0.1330 0.0831 0.0610

0.5 0.0199 0.0315 0.0547 0.0130

4 ..- 
.

.

.
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The negative contributions of n; in the absence of data modulation can be

, viewed as intrasymbol interference which is characteristic of phase-coded

pulses when m-sequences are used as signature sequences. While this

characteristic is not exclusive to m-sequences, it is not generally true for

other classes of binary sequences. Because of this intrasymbol interference,

phase-coded pulses employing m-sequences are a particularly poor choice of

pulse waveform.

In Figs. 3.4 and 3.5, the results of numerical evaluations of P1 for the

sine pulse (as a function of As) and the phase-coded pulse for N = 31 (as a

. - function of p) are shown for the four models for the delay power-density

v

in Figs. 3.4 and 3.5 for the cases when the true value of H is included in
v

the computation, and when H vis approximated as 12(in which case g -

(2 ) M2/T), it i.s clear that this parameter is a significant factor only for
v

phase-coded pulses. In fact, the error introduced by the approximation for

the evaluation of the irreducible error probability for the sine-pulsp is

" quite small. However, assuming H -T2 for the evaluation of the irreducible

error probability for a phase-coded pulse with N = 31 can produce a result in

error by more than two orders of magnitude!

Notice that some of the irreducible error probabilities in Figs. 3.4 and

3.5 are shown for different ranges of normalized rms multipath spread for the

cases where H is approximated as 33. This was necessary to ensure that the

assumption of adjacent-pulse-limited ISI holds but is also indicative of the

relative values of n v for different data-pulse shapes. That is, for a fixed

channel model and fixed rms delay M, there is substantial variation between

77,
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the values of nv for different pulse shapes. The roles of H and nv in

determining the normalized rms multipath spread is made apparent by examining

the relationship between these parameters for different pulse shapes with a

fixed channel model. The values of (2v)/11 2/T for the Gaussian
delay p

are given in Table 3.3 for the rectangular, sine, and phase-coded pulse shapes

using characteristic a-sequences of lengths N = 7, 15. 31, and 63 given in

[32, Fig. 7]. The values of the normalized rms multipath spread Iv are listed

in parentheses in Table 3.3. Notice that for large rms delays, the parameter

V1 for the phase-coded pulse can be much smaller than the corresponding

parameter for the rectangular pulse. However, the values of normalized ms

multipath spread for the phase-coded pulse can be significantly larer than

the corresponding values for either the rectangular or sine pulse. Also,

notice that both q and p svem to be independent of the sequence length N for

any fixed value of rms delay. This is a bit surprising since it might be

expected that the effects of intersymbol interference for phase-coded pulses

employing or-sequences could be substantially reduced, for any rms delay, by

simply using an at-sequence of greater length. Unfortunately, the results in

Table 3.3 indicate that unless the sequences are carefully selected,

increasing the sequence length can increase the sensitivity to delay spread,

and that the phase-coded pulse is at least as vulnerable to the effects of

intersymbol interference as the rectangular pulse.

The above results for the phase-coded pulse are a consequence of both the

channel model we employ, (i.e., that of a continuous delay power-density

spectrum), and the interaction between the data pulse correlation function

R and the delay spectrum g(Q). In particular, for very small values of

rms delay, the power spectrum of the delay is concentrated close to the origin
.4..

,. Ti, -, - ,-.- .,.. .. . . . . . , ,. . ...
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so that the parameter ~p depends most heavily on the portion of Rp(4) that

corresponds to very small values of 4. From (3.17b) we see that, for values

of 4 in the range [OTc], QRp( )1 = Itr( )I = • Unless the
Cl. R p ~ l Ulessthesignature

sequences are carefully chosen, this relationship can hold for several

consecutive chip intervals. Thus, it is clear that for small values of rms

delay, the normalized ras multipath spreads, and hence the irreducible error

probabilities are nearly the same for the rectangular and phase-coded pulse

shapes.

Finally, the results in Figs. 3.3-3.5 indicate that the irreducible error

probability strongly depends on the normalized rms multipath spread AV. From La

these results and the results in Table 3.3, one might erroneously conclude .

that the performance of the phase-coded pulse is approximated by the

performance of the rectangular pulse. In what follows, we demonstrate that

pulse shapes that produce similar irreducible error probtbilities, do not

necessarily exhibit similar performance for practical signal-to-noise ratios.

These results do however show that the irreducible error probability, as a

function of the normalized ms multipath spread, is insensitive to variations

in the shave of the delay power-density spectrum. In fact, the maximum

variation of P, for the pulse shapes evaluated in Figs. 3.3-3.5 is less than a

factor of 1.2 for fixed normalized rms multipath spread. This latter

observation indicates that the limiting error probability for a particular

frequency-selective Rayleigh fading channel can be minimized by simply

choosing a data pulse waveform which minimizes the normalized rms multipath

spread (defined as in (3.23)-(3.25)) for the delay power-density spectrum of

the fading channel.
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3.2.2 Effects of Intersymbol Interference: Bounds

The relative insensitivity of the irreducible error probability to the

shape of the delay spectrum for a fixed normalized ms multipath spread

suggests the possibility of obtaining meaningful bounds on the probability of

error. In this section we describe a method of obtaining bounds on PI for

frequency-selective Rayleigh fading channels.

-C 3.2.2.1 Rectangular uulse

Under the assumption of adjacent-pulse-limited ISI, the functions defined

by (3.12) can be written (for the rectangular pulse) as

2 /2 - 2Tf(g) +

- /2, 
(3.26b)

and

Ir Tf(g) - /2 (3.26)

%* ,* with the normalized rms multipath spread pr given by (3.23) and where the

, _. functional f(g) is given by

Sf(g) = Q0 g() dt . (3.27)

Hence, for fixed pj the irreducible error probability is completely specified

up to the determination of f(g). Equations (3.13) and (3.26) imply that the

irreducible error probability is a continuous function of f(g) so that it is

possible to characterize PI over the range of values taken on by the

- functional f(g). Thus, upper and lower bounds on P, can be obtained if the

minimum and maximum values of f(g) can be found for a fixed normalized rms

d%-
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aultipath spread. The characterization of the variation of f(g) is

accomplished through an application of a result due to Dubins [33].

Let K be the set of all not-negative measures m on the Borel sets of

[0,T] such that m([O,TJ) = 1/2. It can be shown [33] that the extreme points

of M (denoted by ex M) are the point masses on [OT] and that M is compact on

the weak topology [34]. If a 6 M, the hyperplane H defined by

J x(t) m(dt) =c

for constant c is closed and bounded for x C C[OT] [351. Dubins' Theorem

guarantees that every extreme point of M' (MO H1 is a convex combination of

at most two extreme points of M.

In terms of the present application, upper and lower bounds on P, can be

obtained for each value of normalized rms multipath spread by finding the
44-

minimum and maximum values of
4T

f(m) 4 mldC) ,(3.28)

for m 4 M subject to the constraint

2  12 m(d4) = i /2, (3.29)

0

where mld) = g(g)dC. Since the functional f in (3.27) is a continuous linear

functional on m, it obtains its minimum value on an extreme point of

m, = mnO. Hence, by Dubins' Theorem, the minimum of f is found by searching

over all convex combinations of two point masses (impulse functions) in M' for

the smallest value of f(m); i.e.,

%m fin min( f(m) m 6 ex M')
" .. ?
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This search in [0,T]2  is easily implemented. In fact, for the

rectangular pulse it can be shown that the pair (fmin, fmax) is given by

( 2/2,pr/2) for It. ( 1/2. The resulting bounds for the irreducible errorV...

probability are then found by searching over the interval Ifmin'fmax ] for the

% minimum and maximum values of P It is necessary to carry out this final

search since PI is not necessarily a monotonic function of f(g). In Fig. 3.6,

the minimum and maximum irreducible error probabilities for Lhe rectangular

pulse are shown as a function of pr" Notice that for a fixed value of pr the

total variation from the minimum to the maximum value of PI is very small; the

two bounds differ by a factor of less than 1.5.

3.2.2.2 Sine pulse

Using the fact that Hs  T2 , and assuming adjacent-pulse-limited ISI, we

can write the functions in (3.12) for the sine pulse as

""- T2 f'(g) -2Tf'() /2 , (3.30a)

1s= 2s/2" (3.30b)

and

2

- = Tf"(g) - s/2 (3.30c)

*.' . .. w.ith the normalized rms multipath spread p given by (3.24) and where the

-:J functionals f'(g) and f"(g) are given by%* %
T 2

V(g) c J os 2 (n/T) g(C) dt (3.31a)
0

and

ff(S) [-Ccos2(nt/T) + T/n sin(x4/Tcosn4/T)] g(C) dt . (3.31b)
0

*
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Thus, we may proceed as in the previous section where the constraint H is now

E Wgiven by

T-2 2 2
0 [-4coslt/T) + T/w sin(l4/T)] g() d = g /2, (3.32)

except that in this case the set {f'(m),f"(m); m Q ex M') is a region in R2 .

Hence, the minimum and maximum obtainable error probabilities are found by
4o -

searching over the convex region

Q = co ((f'(m),fm)) m e cx M') e R2

where co (S) denotes the convex hull of S. However, in order to avoid the

task of completely characterizing Q. we perform the two-dimensional search for

the minimum and maximum P, over the rectangular region

If

[in fmaxX I fin,fmax])

which contains Q. The resulting bounds for the irreducible error probability

for the sine-pulse are shown in Table 3.4 as a function of the normalized rms

multipath spread ps" Notice that even though we have "weakened" the bounds on

PI by performing the search over & rather than Q and assuming that Hs = T
2 ,

the total variation between upper and lower bounds is still no larger than a

'. '. factor of 4 (for fixed p

- '. 3.2.2.3 Phase-coded pulse

Finally, we address the problem of obtaining bounds on P1 for the phase-

4* coded pulse, which is the most complicated of the three pulse shapes

considered. Under the assumption of adjacent-pulse-limited ISI, the function

.p can be written as
p

- .. .. . ........... .. ,. . .. . ,. ... ... ....... -.. .. .. .. . . 4 . "',i



Table 3.4. Irreducible error probability bounds for sine pulse DPSK with
* respect to the normalized rms multipath spread pi

o.ov

V,.Lover Bound Upper Bound

0.0005 0.8361-10-7 1.22 7

I.

0.001 3.56l ~5.2812-10

0.005 1.0311-10 ~ 1.4204.10-

*0.01 4.1277-10~ 6.1089-10'

0.05 1.0262-10-3 2.4748-10-3

0.1 0.4104-10 2  1.6259.10 2

I

...........- o°
m ...
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Tip= ILH /2 . (3.33)
pp

Unfortunately, there is no obvious way to characterize the functions Tj and

in terms of the normalized rms multipath spread gp and a few linear

functionals of g. Moreover, since H strongly depends on the shape of the

delay power-density spectrum and can, in fact, equal zero for certain examples

Of multipath delay spectra, there is not a clear relationship between Lp and

Ap (as evidenced by the data in Table 3.3). Thus, a given value of normalized

rus multipath spread does not necessarily correspond to a linear constraint on

"" the set of delay power-density spectra. Alternatively, if we assume that

H p : 2 and proceed as before, the resulting upper bound for the irreducible

. - error probability is approximately 1/2.
* .i.*

However, if we make two additional assumptions concerning the

characterization of the channel, both upper and lower bounds on the

performance of phase-coded pulse DPSK can be obtained. We assume that a

- fraction of at least 1/2N of the total power of the delay spectrum lies in the

range [-Tc,TcI where N is the length of the signature sequence. Second, we

assume that the frequency-selective channel is represented by a specular

m$ multipath channel with paths corresponding to delays in the set
!a (0o,+Tc+2T 0'.±,+(N-1)T ) so that the delay power-density spectrum g(t) is

c- c - c

-. represented by a discrete density spectrum g(kTC). This model may, in a

- sense, be more appropriate for phase-coded pulse since systems employing

phase-coded waveforms can resolve the multipath components of the delay

e spectrim for many channels of interest. We proceed by finding the minimum and

Smaximum values of p and i under the constraint,

-2 N

" "
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and performing the search for the minimum and maximum PI over the region

[[ p,minp, max I[ ,min pmax L[p,minlp,max

where 1p~min = 22/N. The resulting bounds for the irreducible error

probability for the phase-coded pulse are given in Tables 3.5 and 3.6,

respectively, for i-sequences of length N = 7 and N = 31 discussed above.

Notice that there is almost no variation between upper and lower bounds,

and that the bounds for the phase-coded pulses are very similar to those

obtained for the rectangular and sine pulses. The small variation between the

bounds in Tables 3.5 and 3.6 is partially a result of the first assumption;

there is a path with non-zero energy corresponding to zero delay. However,

the "closeness" of these bounds is primarily due to the fact that modeling the

delay density as a discrete spectrum allows the effects of the parameter H to
P

be incorporated in the bounding procedure. (Recall that this parameter is a

significant factor in determining the value of the normalized ms multipath

spread.) In fact, it is easy to demonstrate that if we assume H : T2 , thep

resulting upper and lower bounds differ by a factor of N (the sequence length)

for normalized rms multipath spreads of about 0.01.

Since the bounds in Tables 3.5 and 3.6 are obtained under assumptions -

that are more restrictive than those used to obtain the bounds for the other

pulse shapes, it might be argued that the results for phase-coded pulses are

of little consequence. However, it seems reasonable to assume that some

portion of the received signal energy corresponds to zero (or near-zero)

propagation delays, and that this portion is at least as large as the average

of the energy received in any interval of width To. Since the upper bound on

Pc
P for phase-coded pulses can approach 1/2 if there is no signal component in

. . . . . . . . . - - - . . - . - . - . - . . - . , . . . - - . . - . - . - - - . • . - - - . - . . - % . . . - . . . "
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Table 3.5. Irreducible error probability bounds for N = 7 phase-coded pulse
S .. with respect to the normalized rms multipath spread p

Pp Lower Bound Upper Bound

0.0005 1.1176.10 -7  1.303910 -7

0.001 4.9919 10- 7  5.178110- 7

0.005 1.2543 10-  1.2565.10 -

0.01 4.9754.10- 5  5.0252.10- 5

0.05 1.1186.10- 3  1.4069.10- 3

0.1 3.3669.10 -  7.3647-10 -

0.5 3.7202.10-2 2.5337.10- 1

Table 3.6. Irreducible error probability bounds for N = 31 phase-coded pulse
with respect to the normalized rms multipath spread gp

• Lower Bound Upper Bound

0.0005 1.1176.10 -  1.3039.10 -

0.001 4.9919.10 - 7  5.1781.10 - 7

- 0.005 1.2267•10 - 5  1.2850.10 - 5

0.01 4.5614.10 -  5.4812.10 -

0.05 0.3679.10- 4.32587•10

0.1 0.4683.10 - 3  4.8358.10 - 2

-3o -1

0.5 5.8824.10 -  4.3373.101

,.r .. .. ., . ..... . ..- ...............................
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the range [-TcTc] this assumption can be viewed as a necessary condition for

the operation of phase-coded pulse DPSK.

3.2.3 Effects of Additive Noise: Characterization

Consider the response of in-phase and quadrature correlation receivers

matched to v(t) (and assumed synchronized in time) to a single transmitted

data pulse signal

s(t) = boY(t) ; 0 _< t < T

where E is the energy per data bit. In the absence of additive noise, the sum

of the squares of the filter outputs is W

16a 2E -2
Sout = f sL ) R1(Id ) dt (3.35a)

= G(Q) Ov(Q) dfl , (3.35b)

by Rayleigh's theorem, where P (D) is the inverse Fourier transform of

t(1.I). The corresponding output due to the additive white Gaussian noise

with (two-sided) spectral intensity N0/2 is 8NoT.

For a nonselective Rayleigh fading channel, g() = 6( ) so that the

frequency correlation function G(Q) is equal to unity across the band of

interest. In this case, the signal-to-noise ratio (snr) at the output of the

matched filter becomes

= 2aatE=(3.36)

N0

• since, by definition, 1v(0) = T2 . Notice from (3.35) that the function (0)

can be viewed as a power-spectrum of the single-pulse, or "one-shot" matched .. le

filter output prior to sampling, in non-selective fading so that (3.35b) and

I'I

~-

.....................................................-. *. .. q o°
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the resulting signal-to-noise ratio is maximized when the frequency

correlation function G(Ml) is flat across the band.

In contrast, one of the essential characteristics of frequency-selective

fading is the fact that the frequency correlation function G(G) is not flat

but resembles the transfer function of a band-limited data channel. We point

out that this is only a resemblance and not an equivalence. Rather, in the

absence of additive noise, the function G(M) is a measure of the degree of

statistical correlation between two received spectral components separated by

13 Hz. Thus, in the case of frequency-selective fading (3.35b) indicates, in a

statistical sense, what fraction of the received power (due to a single pulse)

is available at the output of the matched filter. This observation is made

apparent in the resulting expression for the single-pulse signal-to-noise

ratio for frequency-selective fading, given by

2a 22E 2a2E -

snr dG) Pv dl g(V v(4bd

2G2 E
211v/T2 (3.37)

N0
4'.

.4

which implies that iv is the key parameter in determining the signal-to-noise

ratio for single-pulse matched filter detection. Notice that if we neglect

the effects of intersymbol interference on the error probability in

'p frequency-selective fading so that both q v and qv (cf. (3.12)) are taken to be

" ' " zero, the average error probability (3.7) becomes

P40
2E  2iv 1

e N0  T2(.8'p

-w

.. +....................................,............................ ................................



The results in Section 3.1 demonstrate that for small signal-to-noise

ratios, the average error probability for frequency-selective Rayleigh fading

is well approximated by P (2 + 4o2 E/No) - , which is the probability of
ns

error for non-selective fading. While this approximation is valid independent

of data-pulse shape, the above discussion implies that (3.38) is a much better

approximation of the error probability for small signal-to-noise ratios thanS.•-..

S- P ns In fact, for a given pulse shape, the asymptotic error probability for

small signal-to-noise ratios is given by (3.38). Moreover, for all examples

of data-pulse shape and delay density considered here, (3.38) may be taken as

a lower bound for the average probability of error for all values of snr.

Hence, the parameter lv in some sense determines the position of the

"inverse-linear" lower bound on the error probability as a function of

-. .signal-to-noise ratio S = 22E/ 0.1*

The differences between the signal-to-noise ratios in (3.36) and (3.38)

are probably not a major concern for signals with relatively small time-

bandwidth products, viz. the rectangular and sine pulses. However, for large

time-bandwidth product pulses, such as the phase-coded pulse with moderately

large N, this factor becomes significant and plays a central role in the

choice of pulse shape. For a channel with Gaussian delay power-density

.., spectrum, the values of the parameter iT/i2 are given in Table 3.7 for the

el rectangular and sine pulse shapes, and for the phase-coded pulse shapes using

the i-sequences of length N = 7, 15, 31, and 63 discussed above. The results

in Table 3.7 show that for small to moderate values of M/T, a large percentage

" of the received signal power is utilized by the matched filter detector for

4' both the rectangular and sine pulses for this channel. If M/T = 0.1, for

example, the matched filter output for the rectangular and the sine pulse

5' ;F ;-2 .2 ; . N --- . ; - . .: 4 ;.. : . - .. .: ..;..:...,..-,-. ,'.,..,.-,. .., - .. :, ...- ... ,
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Table 3.7. Values of ii/T2 in terms Of the rms delay M for the rectangular and
v

Sine pulses and for the phase-coded pulse with sequence lengths N
7,15,31,63

-'U1
-U

1-:

' ~ ~ ~ ~~ / ect sine Nuse =n 7o Nh =h-oe puls wN seue= lnth N =
-- -: -7 ,- -- -- - - -- -- -- -- -- -

" i

,,0.05 0.4614 0.4886 '0.2419 0.1634 0.0844 0.0424

' I " '0.1 0.4252 0.4594 0.1453 0.0878 0.0436 0.0217 ,

0.5 0.2246 0.2124 0.0437 0.0208 0.0106 0.0049

.. . .. . . .. . . . .. . . .

. p.. .. . . . . . . . --
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represents about 85% and 91% of the total received signal power, respectively.

In comparison, only about 9% and 5% of the received signal power is utilized

for matched filter detection of the phase-coded pulse for N = 31 and N = 63.

In contrast to the analogous results for the normalized rms multipath

spread, the parameters _q for phase-coded pulses uniformly exhibit a strong
p

dependence on the sequence length. It can be shown that, for a large class of

channel models and typical sequence lengths N, the parameter np is closely

approximated by k/N wh.e k depends on the channel. For the above example,

" this constant is approximately 2.62, 1.35, and 0.33 for M/T equal to 0.05,

-'9. 0.1. and 0.5. respectively. The low signal-to-noise ratio asymptotic error

probability (3.38) becomes

Pe 2 +  • (3.39)

for the phase-coded pulse with sequence length N.
'.

In the previous section. it was demonstrated that the phase-coded pulse

waveform is at least as susceptible to the effects of intersymbol interference

as the rectangular pulse. Thus, phase-coded pulses provide little potential

*. for improvement in the limiting error probability. Moreover, when coupled

with the data in Table 3.7, these results indicate that the average error

probabilities for the phase-coded pulse are relatively large for all practical

values of S - 2a2E/N . For example, from Table 3.7 for M/T - 0.05 and N - 63.
*0

-. we see that for fixed error probability, the additional signal-to-noise ratio

required for the phase-coded pulse relative to the rectangular pulse is about

0.4614/0.0424 or 10.37 dB.

The relationships between irreducible error probabilities, available

signal power, and system error performance can be seen by examining Fig. 3.7.

.6,

[%.%
.

p '.
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FiSure 3.7. Average error probability for rectangular, sine and phase-coded
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The average probability of error is given as a function of S = 2a2E/N0 for the

rectangular, sine, and phase-coded pulse (N = 31) for the Gaussian delay

power-density spectrum with rms delay M = T/10. The low signal-to-noise ratio

asymptote given by (3.38) and the irreducible error probabilities (which

appear as horizontal asymptotes) are shown fox each pulse. Notice that while

the limiting error probability for the phase-coded pulse with N = 31 is

roughly equivalent to that of the rectangular pulse, the actual error

probability for the phase-coded pulse is higher than for the rectangular pulse

for values of signal-to-noise ratio less than 35 dB. Also, notice that the

sine pulse exhibits the best performance of the four pulse shapes considered

for the entire range of signal-to-noise ratios. These results are in

agreement with the data presented in Tables 3.3 and 3.7 which show that the -o

normalized rus multipath spread ps for the sine pulse is significantly smaller

than the corresponding parameter for the rectangular pulse. Moreover, the

parameter A , which is related to the utilizable signal power, is largest for

the sine pulse while the corresponding parameter for the phase-coded pulse

indicates severe performance degradation in the presence of additive noise.

e" Finally, we point out that the performance of phase-coded pulse DPSK in

Rayleigh fading is related to previous results concerning the performance of

coherent spread-spectrum communications. In particular, the results in (26]

and [31] demonstrate that the effects of interference caused by multiple

propagation paths for relative delays in the range (-T+TcT-Tc] can be

substantially reduced by the choice of the signature sequence. More

importantly, it is shown that the spread-spectrum receiver (which is

essentially a coherent matched filter) severely discriminates against signals 'I

with propagation delays outside the range [-TcTc] This property is
..

COT'I

7



generally desirable for communications in a multipath environment when there

is at least one relatively strong path. However, it is precisely this property

that degrades the error probability of spread-spectrum communications in a

frequency-selective Rayleigh fading channel.

3.3 Performance Aporoximations for Other DPSK Systems

' 4'" In the previous section it was demonstrated that bounds on the error

7 probability of DPSK in a WSSUS frequency-selective Rayleigh fading environment

can be obtained when the channel delay spectrum is normalized with respect to

'S the autocorrelation function of the specified data-pulse shape. The resulting

bounds show that the limiting error probability is relatively insensitive to

variations of the channel delay power-density spectrum (for fixed normalized

ms multipath spread).

The bounds on system performance represent useful results since the

limits on the effects of frequency-selectivity on DPSK communications have not

been previously characterized. Moreover, the closeness of these bounds imply

- that it is not necessary to fully characterize the channel in order to obtain

an accurate estimate of system performance. This is of considerable

importance, since in practice it is difficult to precisely describe the fading

process [13).

Another implication of the above results is that it may be possible to

estimate the average probability of error of a proposed system from the

tabulated error probabilities in Section 3.2. In particular, Figs. 3.3 and

3.4 indicate that the irreducible error probability for the rectangular pulse

as a function of the normalized rms multipath spread g r closely approximates

the irreducible error probability for the sine-pulse as a function of ps"

-oh 'NS * %S ' ' . S,. '
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Similarly, Figs. 3.3 and 3.4 indicate that the irreducible error probability

for the rectangular pulse as a function of p1 closely approximates the

irreducible error probability for the phase-coded pulse as a function of pp

In Fig. 3.8, the irreducible error probabilities for the rectangular pulse,

the sine pulse, and the phase-coded pulse (N = 31) are shown as a function of

their respective normalized multipath spreads, gv . The results in Figs. 3.3-

3.5 indicate that there is little to be gained by considering more than one

delay power-density spectrum. Hence, for this example we have represented the

fading channel by a Gaussian delay power-density spectrum.

The results in Section 3.2 and Fig. 3.8 indicate that there is

essentially a single relationship (represented by Fig. 3.8) between the

irreducible error probability P, and the normalized rms multipath spread pv -"

for DPSK in frequency-selective Rayleigh fading. We make the following

observation concerning this result: The data in Fig. 3.8 in some sense

represents the irreducible error probability as a function of g for a generic

(time-limited) data-pulse waveform v(t). Hence, the limiting error

probability for a particular Rayleigh fading channel and a particular time-

'' limited data-pulse waveform u(t) (say) can be closely approximated by means of

a single rms-type [13] channel parameter,

-~2 2 d 1 /2  1 2( /
- iu SM U~ g)R(4) H~ uf g(Q)Ru 141) t

S (C) R 2(141) dt 11/2  (3.40)
u L

* 2
with the autocorrelation function R (Q) defined by (3.14). Of course, the

last equality in (3.40) follows only if the adjacent-pulse-limited ISI

assumption holds. (However, the data presented in Section 3.2 indicates that

......... ......
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this must be the case if the performance is to be acceptable at all.) The

resulting approximation for the irreducible error probability is found as the

corresponding value of P in Fig. 3.8.

'.

" For small time-bandwidth product pulse shapes, a good estimate of the

average error probability as a function of the signal-to-noise ratio S is

realized as a curve which lies above P nin (3.18) and P, (calculated from

" (3.40)) and which asymptotically approaches P es and se extime vauehe

. othe signal-to-noise ratio. If it is also possible to measure the quantity

2 u/1-2  jS (M R 2(141) d4 GM0 Pu dQ (3.41)
U L u

then a more accurate approximation (especially for large time-bandwidth pulse

shapes) can be found as above by replacing P ns by the low signal-to-noise

'. ratio asymptote given in (3.38) for the parameter a calculated from (3.41).
u .

* There may. of course, exist design situations for which an approximation

of error . performance is unacceptable for a system evaluation. In these

lI

situations, it may be necessary to construct and test the proposed system or

obtain a more complete characterization of the channel. However, the

approximations discussed above could be of significant utility in the

consideration of DPSK systems employing complicated pulse shapes and in

applications to fading channels which are difficult to fully characterize.

For example, if phase-coded pulse waveforms are under consideration as

candidates for the pulse shape, these approximations may be useful in the

selection of signature sequences, as well as in the comparative system

* . evaluations which would provide insight into the potential benefits of hybrid

frequency-hopping/direct-sequence systems versus simple frequency-hopped

systems employing DPSK modulation.

~...
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3.4 Aplications to Freuencv-Selective Rician Channels

In the analysis of the preceding sections, we have assumed that the

* ' response of the fading channel to a deterministic input signal s(t) is

represented by a zero-mean complex Gaussian random variable (i.e., Rayleigh

fading). There are, however, situations where the fading channel is more

accurately modeled as Rician. This channel model arises when the received

signal contains a nonfaded specular component as well as a Rayleigh faded

component.

. .4 The narrowband model for the received signal in the case of Rician fading

is given by (2.3) with the parameter a > 0 representing the strength of the

specular component. As in the case of Rayleigh fading, the decision statistic

Z. in (3.5) can be written as a quadratic form of Gaussian random variables U

and V. The resulting conditional probability of error, given a particular

sequence of data bits (b.) is transmitted, is related to the probability

distribution of the ratio of Chi-square variables, each having two degrees of

I, freedom; the non-centrality parameters depend on the characteristics of the

system. Expressions for the conditional error probabilities are derived in

, (191 and [361, where in each case the result is obtained through the inversion

of the characteristic function of Hermitian quadratic form of complex Gaussian

random variables [37] by means of a double integral evaluated by Price [38].

Results of previous investigations of the performance of digital

communications over Rician fading channels indicate that the error probability

is upper and lower bounded by the corresponding results for the Rayleigh

channel (no specular component) and the additive white Gaussian noise channel

(no fading), respectively. In the remainder of this section, we show that the

-} ,e ,.
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average probability of error for DPSK in Rician fading is completely

determined by the parameter a in (2.3) and the parameters necessary for the

evaluation of the error probability for Rayleigh fading considered in the

previous sections. Thus, the results for Rayleigh fading, which are

essentially the results for the "worst-case" Rician channel, are also useful

in determining the error performance in the more general Rician case.

It can be shown that the conditional error probabilities for the Rician

channel 'depend on the characterization of the Rayleigh faded portion of the

received signal only through the parameters T1' 11V, and -qv defined in (3.12)

and discussed in Section 3.1. In particular, assuming without loss of
generality that b = b for the transmitted signal s(t) given by (3.1), the

-i, . b-

_ .conditional error probability [19] can be written as

-. ... mu b i V

~k) 1~~~~~- ~ mUU(kP myy() 1) + MU(ki)
ihi- 2Q m/ UY-) V-i ) '-

2 p I0( A(b.i)B(bi)) (3.42)

where Q(.,.) is Marcum's Q function [6], and I0 (x) is the modified Bessel

function of the first kind of order zero and argument x. The parameters Albi)

and B(&1 ) in (3.42), which are related to the non-centrality parameters of the

corresponding Chi-square variates, are given by

N.' 4cL2ET" -2()bi1] (3.43a)"
- ___________ rUU(jk)+.V,(b 1 ) -2(bib i________,;, UU(_ki), ( i).

" and

B B() 44ET [MUU(i+mvVki) +2(bibi 1) V ijt k.)m.v(bi)]. (3.43b)

........ i. .i)
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The moments, m Xylbi) in (3.43) are the central moments of the random variables

U and V defined as

mXyi)= EX - E[Xl i])(Y - E[Y1bil)*1b i}

Using (2.3) and (3.6) for the signal defined by (3.1), we see that ELU =

a '/8ET.b. and E[V) = afM.b i I so that the moments in (3.43) are precisely

the same as those defined in (3.10) for the analysis of Rayleigh fading

channels.

It is easy to see that (3.42) reduces to the error probability

expressions for Rayleigh fading (see (3.8) and (3.9)) when a = 0. In fact, if

a = 0, then A(bi) = B(bi) 0, and (3.42) becomes

PZb) Imv(bi)mvv(bi) + muv(b1 i)
2 P(b-) = 2 mUU.(bi)mV(h)

since Q(0,0) = 10(0) = 1, which is identical to (3.8) for the case bi_= b i .

Alternatively, if there is no faded component in the received signal, then

2a = 0 (cf. (2.4)) so that tLe moments in (3.43) become
% '

mUU= mVV = 8NoT

. . and

muv = 0.

- If b i-1  bi, then A(bi) 0, and B(k i) = 2a2E/N0 and (3.42) becomes

-.. P~b~i )M=d exp -_

-" No

(since Q(O.x) = exp(-/2) [61), which is the average error probability of DPSK

for the additive white Gaussian noise channel.

o .
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CHAPTER 4

PERFORMANCE OF BINARY FSK COMMUNICATIONS OVER

FREQUENCY-SELECTIVE FADING CHANNELS

In this chapter, we consider the evaluation of the average probability of

error for binary FSK communications over WSSUS fading channels. As in Chapter

3, the analysis is first carried out for the case of Rayleigh fading channels

(i.e., with the channel response given by (2.3) for a - 0). It is then shown

that the error probability for the more general Rician channel is completely

specified in terms of the key system parameters used in the performance

evaluation for Rayleigh fading.

Previous results on the performance of FSK in frequency-selective fading

include those found in [2,17,18]. In [17], Bello and Nelin consider the

performance of FSK where the frequency separation between the two signals is

assumed to be an integer multiple, of 1/2T. The channel is modeled as a

Rayleigh fading channel with a Gaussian delay power-density spectrum. The
%W

degree of frequency-selectivity is defined as the distance between the l/e

points of the frequency correlation function G(Q). It is shown that the

system error performance depends on the relative phases as well as the

frequency separation of the two transmitted signals. The authors claim that

FSK is generally less sensitive to the effects of frequency-selective fading

than rectangular pulse DPSK. The authors also state that for large signal-

to-noise ratios, FSK produces lower error rates than rectangular pulse DPSK

for channels which are highly selective. However, these claims are not

supported by the numerical results for the irreducible error probability in

[16] which differ from the results in [17] by an order of magnitude.
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In [2] and [18], the performance of FH/FSK for Rician fading channels is

F considered for a triangular delay power-density spectrum model. However, in

both cases the authors assume that the two FSK signals are orthogonal at the

receiver. In Section 4.2, we show that this is equivalent to assuming that

the frequency separation between the FSK tones is infinite.

In this chapter, the effect of frequency-selective fading on the

-'-" performance of noncoherently-detected FSK is investigated for a number of

signaling formats. The parameters that characterize the effects of

intersymbol interference and additive channel noise are identified. It is

shown that the performance of FSK communications over frequency-selective

Rayleigh fading channels can be well approximated in terms of these key

parameters which are related to rms-type channel measurements. The results

for FSK are compared to the results for DPSK in Chapter 3. It is found that

the error performance of these two systems depends on a number of common

factors and can be quite similar in some cases. The technique for obtaining

bounds on the irreducible error probability for DPSK is applied to the

"- analysis of FSK. Finally, we consider the approximation of the performance of

other FSK systems in terms of the key system parameters.

4.1 System Model

The information source for the FSK transmitter is modeled as a sequence

(.) of mutually independent random variables, each taking on values in the

set (0,11 with equal probability. The binary data sequence (b.) is given by
°I

., the mapping

.
-. bi = -:~:

*o
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from (0,1] to (-1,1) for each integer i. Using the narrowband signal models

discussed in Chapter 2, the transmitted signal s(t) is defined by

slt) = v(t iT) j-J[binht/T + O(i~bi)] (4.1)

for t Q [iT,(i+l)T] for each integer i. The real-valued waveform v(t) is

assumed to be time limited to the interval [0,T] such that

T 0 v(t)2 dt 1,
T0

so that E is the energy per data bit.

The parameter h in (4.1) is known as the deviation ratio or modulation _

index of the FSK signal set [39] and is related to the frequency deviation fd

from the carrier frequency f (which, of course does not appear in the
c

narrowband signal representation) by h = 2fdT. The two transmitted signals

are referred to as the mark signal and the space sitnal. We follow the

convention in [39] by denoting the signal transmitted at frequency f - fd as

the mark signal and the signal transmitted at frequency f + f as the space
c + d a h pc

signal. From (4.1) we see that the mark signal corresponds to the case when

b. = -1 (i.e b = 1), and the space signal is transmitted when b i

(i.e., . = 0). The phase angle O(ibi), which depends on both the value of

the i-th data bit and the interval in which it is transmitted, represents the

phase of the transmitted signal s(t) at time t = 0.

Depending on the method used to generate the transmitted signal, the

phase angles e(i,-l) and e(i,+l), corresponding to the mark and space signals,

respectively, may be related or may be modeled as statistically independent

* random variables. For example, if the transmitted signal is obtained by

switching between two uncoupled oscillators, the two phase angles are modeled

.. . .. . . . .. . . . . . . . .-- - - -- a... .% a'.

-. ... ..' - - . -.-.- "- .- .- .- - ' .- ,.....- - - . %- . -a % ,. _. , ' . - " . . .
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as independent random variables uniformly distributed on (0.2n].

Alternatively, if the transmitted signal is a continuous-phase FSK (CPFSK)

signal, then the phase angles are related by O(i,+l) = e(i+l,-l) + 2nhi. We

assume in any case that no abrupt phase transition occurs between two

j consecutive data-pulse intervals if the two corresponding data bits are

identical. That is, we assume that e(i,+l) = O(i+l,+l) and that O(i,-l)

[-" " O ( i+1 ,-1 ).

p-

By using narrowband signal models to represent the signals in the FSK

system, we have removed the dependence of the orthogonality of the two

transmitted signals on the carrier frequency fc" Rather, the two signals are

said to be orthogonal if and only if

jT v2(t)e-j[2nht/T + O(0.+l)-O(O,-l)] dt = Tv2(t)e- j [2Tht/T] dt = 0

0 0

1- Unless stated otherwise, "orthogonality" is used to describe the relationship

". of the mark and space signals at the transmitter. Hence, for narrowband

signal models, the orthogonality (or lack of orthogonality) between the mark

and space signals is completely determined by the pulse waveform v(t) and the

modulation index h. This is equivalent to the assumption that both f and h
c

are integer valued, or that (f CT - h) >> 1.

The FSK receiver is modeled as the noncoherent matched filter receiver

shown in Fig. 4.1, which is discussed in [39]. During each time interval,

[iT,(i+l)T], the receiver forms the decision statistic Zi represented by

4.(i+1)T 2(~)"Z 4 r(t)v(t)ej t /T dt - f r(t)v (t)e- J n t/T dt
'- "iT iT

IU12 - IV12  (4.2)

- -_.
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- where

U 2 r( tv (t)ejnth/T dt (4.3a)

:- .' .'-"and

.- , (i+1)T
e. V = 2 r(t)v (t)e-Jlth/T dt (4.3b)

From (4.2) we see that the decision statistic for the i-th data bit is a

quadratic form of complex Gaussian random variables U and V.

Under the assumption that p(t-x,) 0 0; 141 > T, (i.e., adjacent-pulse-

limited ISI), the output statistic Z. depends on at most three consecutive
-. Oo q

,.'.. -. data bits represented by h i = (bi,. bi , bi+,). The probability of error can

be written as the average of probabilities, each conditioned on the event that
-°.% .

.-. one of the eight possible sequences of data bits are transmitted, i.e.,

b. -1M Pe =  - P(h-i) '(4.4)
.. 8, b.

--1

5'% *.'... where P(bi) = Pr (error occuslbi transmitted). In [11,171, Bello and Nelin

show that the conditional error probabilities are given by

P(b.) = (2 + y(bi)) -  (4.5)

where the "equivalent" signal-to-noise ratio y(.) may be written as

2 1 (mTU(k i ) - mv (11i )
. (bi) = (4.6)

,.., ".(muuli ) + MVV(ki)) 2 - 4 lmu(vb.) 12 - 1(mUu(bi) - mVV(bi)

a function of the moments XY(hi) = EXY lb. of the random variables U and V.

.4'..
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Using (2.5) and (4.3). the moments in (4.6) are found to be

- 2,(i+l)T (i+l)T T
mUUv(bi) =8G 2f p(t-x.4)s(t)v(t)iffth/T

* s*(x-t)v(x)e-jflh/T d~dxdt + 8N0T, (4.7a) -

=80~ 2f J -,)~ttv(~ejx/
iT ~iT IT

'~,'-.-d~dxdt + 8N0T, (4.7b) -

and

(ilT (i+1)T T

iT 1 iT -[Tptx.)t~)teah/

* x-tv~xjnx/ ~ ddt + r0 T v(t)v(tej2 fth/T dt. (4.7c)1

By substituting g(.) for p(...) in (4.7). we see that the moments needed

to evaluate i~h1 ) and hence Pe can be written as

_16a 7
2E T 2-T 0. g~)[ 2liR(h~bi,4)I2 +I (hb ~)2+ IR~h ~I

+ 2Re(e T(i+l~bi)+(bi+f-l)Th]. R (h~.tR hb+4 d

*+ 8N T. (4.8a)

* -as0

% %
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vv(hi) lSci2E 21iR(h,-bit)I +JR (h,-b. 41 +IR:(h.-bi+i,4)I
-T 0

2Re(ei [O( )bb..l1h/]R -b,4)R (h-b.

2Re~ej[O)T(i+lkbi)+(bi+1+1)rh]. R (hD -bit).Rv(h,-bi+i4) d4

+ 8N 0T, (4.8b)

and

-m .(b.) 16 2 T (1+e-j2 nhg/T )-R(h~b.4)R (h-bit

T 0

2~~j+ R (h~bi. 1 4).R(h-bi.4 + e -j2nh(4-T)/T.RV( h,bi+i,4).R V(h.-bi+i84)

+ ej[(eT(iDZi)-(bi bi..l)irh4/T].R (hli l4-vh-i4

+ v

+ e-j £T(i+lDbi)+2 nTh4/T+Inh(bi+f-1)].a (hb 1 1).R (h,-bit

T
+ 8N0  v(t)v Mtej~t/ dt (4.8c)

The phase transitions, e T(i~bi), which denote the differences between the

phases of the mark and space signals at time t 0 is given by

0 * b. = bi

The correlation functions RV( h,bi,) and Rv(h~bi,) in (4.8) are defined

by
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jnht(-b )/Td

Kv(h,bi,:) = , v(t) v(t-4) e h  i  dt (4.10a)

and

R=hbit v(t) v(t+T-4) e•j uh t (1- b i )/ T dt (4.10b)
v 0

for 0 < T. Notice that Rv(h,bi,t ) and Rv(h,bi,t ) are related to the

aperiodic autocorrelation functions defined by (3.10a) and (3.lOb). In fact,

using (3.10a) and (4.10a), it is easy to see that Rv(h,lt) = 1v1.

Similarly, from (3.10b) and (4.10b) we have that Rv(h,1,4) = Rv). In

contrast, the functions R (h,-1,4) and Rv(h,-1,4) are, in general, complex-
V

valued functions that depend on the modulation index h as well as the waveform

v(t). Unfortunately, it is difficult to express the result of these integrals

in compact form for arbitrary modulation index. Finally, notice that the

function R(h,-1,O) is simply a measure of the orthogonality of the two FSK --

signals.

Using (4.6), (4.8), and the fact that we consider only binary symmetric

signal sets (cf. (4.1)), it can be shown that y(i I) yl-bi). This property,

along with (4.4), implies that P in (4.5) can be reduced to
a

P= P(-1, 1,-11 + P(+,+l,-1) + P(-1,+l,+) + P(+l+l,+I)I, (4.11)e 4

so that we need only consider the case when a space signal is transmitted

during the i-th data-bit interval.
_ °' .

In the present analysis, we consider a number of examples of binary FSK -

*signal formats. Within the class of CPFSK signals, we consider modulation

.*indices h - 1/2, 1, 2, and 10 for a rectangular waveform v(t). The example

of rectangular pul!9 FSK for h = 10 is considered as an approximation to the

case of "infinite" frequency separation between the two FSK tones. Notice that

the CPFSK signal with h = 1/2 produces what is known as a minimum-shift-keyed

m'n.mu* shift-keyed -. 4
- " S~~*.-.--x.:

* '~ . . .
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or NSK signal [39]. Of course, it is not common practice to consider the

r performance of MSK signals for noncoherent detection since MSK signals do not

.- comprise an orthogonal signal set. By examining R (h,-1,O) in (4.10a), it is

easy to see that h = 1 is the smallest modulation index producing an

orthogonal signal set for the rectangular pulse. We include the case of h =

1/2 as an example in order to gain a better understanding of the role of the

modulation index in determining the performance of noncoherent FSK in the

presence of frequency-selective fading. Since we assume that knowledge of the

phase of the transmitted signal is unavailable to the receiver, the phase

: ::. transitions for 1SK signals are related by eT(i,b i) = 0 and OT(i+l,b i) =n or

equivalently, eT(i,b3i) = f and OT(i+l,b i) = 0 for differing consecutive data

bits.

c Other examples of FSK signals considered include those generated by

phase-coded waveforms defined by (3.4). The signature sequences for this

• pulse waveform are the r-sequences discussed in Chapter 3. Notice that for

P1 the phase-coded pulse, the orthogonality of the transmitted signals depends

only on the modulation index h so long as the pulse waveform is composed of a

' -.. sequence of rectangular pulses. In this case, R (h,-1,O) = R (h,-1,O), where
- p

the subscripts "p" and "r" denote the phase-coded pulse and the rectangular

pulse, respectively. Hence, h = 1 is the smallest modulation index for which

the phase-coded pulse signals are orthogonal. However, for fixed modulation

index, the spectral spreading effect of the direct-sequence waveform causes

-t.. -significantly more overlap of the spectra of the mark and space signals than

for the rectangular pulse. For a given sequence length N, we can specify a

set of orthogonal phase-coded pulse signals with roughly the same degree of

spectral overlap as rectangular pulse FSK with h = 1 by let, 6 h = N for

ft * * t - . . . . . . .



. .. 7 . .7

72

phase-coded pulse signals. In what follows, we consider examples of phase-

coded pulse FSK where the modulation index .is taken as the sequence length,

i.e., h = N, as well as examples with h = 1.

In Fig. 4.2, the results of the numerical evaluation of the average error -

probability of CP7SK with modulation index h = 1 are shown as a function of

the signal-to-noise ratio S = 2aE/N0 for a Gaussian delay spectrum with rms

multipath spread p = 0.05. The probability of error for orthoaonal FSK in

non-selective Rayleigh fading, given by

P = (2 + 2cr E/N (4.12)ns 0 -

is also shown. From Fig. 4.2 we see that for small signal-to-noise ratios,

the average error probability is largely determined by the value of Pns" As

the signal-to-noise ratio becomes large, the effects of intersymbol

S. interference become more significant and the average error probability

asymptotically approaches the irreducible error probability for FSK in

frequency-selective fading defined by P = Pe'S _ . The results in Fig. 4.2 "

imply that P, (shown as a horizontal asymptote) is a key performance parameter

," for the design and evaluation of practical systems.

The irreducible error probabilities PI for several examples of FSK signal

sets and the four examples of delay spectra given in Chapter 2 are shown in

Figs. 4.3 and 4.4 as a function of the ms multipath spread p = M/T. In all

cases, the results are obtained using standard numerical integration

techniques. In Fig. 4.3. the results are shown for rectangular pulse CPFSK

with modulation indices h = 1/2 and 1, and for rectangular pulse FSK with h =

*. 1 and T(i,-l) = OT(i+l-i) = )T = n, where 0 T denotes the common phase

' transition. Notice that for modulation index h = 1, the irreducible error

o° •
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probabilities exhibit significant sensitivity to the shape of the delay

density. However, the variations caused by changes in the shape of the delay

density are small compared to the variations between the examples for T  0 .-

and T = n. The results in Fig. 4.3 for the two examples of CPFSK (i.e., h =

1/2 and h = 1) seem to indicate that the irreducible error probability is also

sensitive to small changes in the modulation index. However, in Section 4.2

it is shown that the larger values of PI for CPFSK with h = 1/2 (MSK) are

primarily due to orthogonality considerations rather than the effects of

intersymbol interference.

In Fig. 4.4, the irreducible error probabilities for rectangular pulse

CPFSK with h = 10 and phase-coded pulse FSK with h = 1 and signature sequence

length N = 31 with eT = 0 are shown. For this example of rectangular pulse

CPFSK, we see that the irreducible error probability is not sensitive to

changes in the shape of the delay density for large values of rms multipath

spread. Also notice that the irreducible error probability for phase-coded

FSK exhibits the same erratic behavior as the results for phase-coded DPSK.

4.2 Performance Bounds and Approximations

In this section, the relationships between irreducible error probability,

intersymbol interference, and signal orthogonality are explored by first

characterizing the frequency-selective fading mechanism in the delay domain.

The results for FSK are compared to the analogous results for DPSK in Chapter

3. We show that, in some cases, the limiting error performance of FSK is

dependent on parameters that are closely related to the key parameters for

DPSK. We then focus on the frequency-domain characterization of the fading

channel and identify the system parameters which provide an indication of

%" - R, '-o. -

%"
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-" average error probability with respect to the degree of frequency-selectivity J
and the degradation due to additive noise.

- -4.2.1 Effects of Intersymbol Interference: Characterization

Consider the effects of the interference from the signal corresponding to

b_ on the detection process for the signal corresponding to b0 = +1. If we

consider the portions of the received signal corresponding to positive

* ' propagation delays only, the decision statistic in (4.2) is given by Z0 = Iu12

- IV12 with the random variables U and V given by

U = / J v t)ejith T T h(t.4)'
0 o

" "t-e- j h l t-4)/T + v(t+T-4)e-j[b-ilh(t- 4)/T + e(-lb-)I]dtdt (4.13a)

U and

* hT T
V - TJ vetle -j  fo h(t-T,4)

T o

[v(t-)0e- jxh(t- C)/T + v(t+T_)e-j[b-lfh(t-4)/T + e(-lb-1)]]d~dt. (4.13b)"p
* Using (2.4). (2.5) and (4.7)D the moments and mVV are found to be

n u u i! 
U 6 a2 E x T- S
- -J s( ~ [~" 1) I 2  + 1R( h b l ) 12

" ' " + + 2Re ( - [ eT 0 -- ) 1 b_ ) Ih/TRv(h * ]4UU T 0 v

+ 2R..-j[eT(oD )-(lbl)nh/T] (h.14) R*(hob_ ) } dt (4.14a)

and

16a 2E T 2-+T6 f. g()-[ IRv(h,-1, )[2 + (Rv h,-b_l,)1 2

+ 2 Re(e-j1eT(O~bO)-(l-b~l)nh4/T1. * (h.-l,4).Rv(h.-b_19  )] dt. (4.14b)

• o

N ' °. . . - . • o o ° ° - . . .. . o o . , . . - . • • ° - . .. . .
P '. - " € ' , . . + , , . , ' - - ' . . + ' . ° " , , + . . " . . . . ' , + • , . . ° , • . . . ' . . .
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In view of the complicated form of (4.14a) and (4.14b), it is useful to
consider the evaluation of these moments for specific examples of signaling

K:: formats. In particular, for the case when the modulation index h is integer-
S.." valued and v(t) is the rectangular pulse given by (3.2), the autocorrelation

functions in (4.10) are given simply as

R(hb,t) =(4.15a)

{-4eJ~rhC/T.sinc(h4/T) 
; b -1

-" and

;b 

' - ;b = -3.
'- R(hob,t) =(4.15b) 

.

4eJnh4/T'sinc(h4/T) ;b fiio"

" where sinc(x) sin(nx)/(nx). The bracketed terms appearing in (4.14) depend

only on the transition phase 8T(0,b0) and the functions in (4.15). For this
-. example, the terms appearing in the expression for MU are given by

T2 "if 
b_1 I, (4.16a)

and

(T-4)2 + 42 sinc 2 (ht/T)

+ 2(T-t)tcoS(OT(0,b0)_ h4/T)sinc(ht/T), if b-l = -1. (4.16b)

Similarly, the bracketed terms for mf. in (4.14b) become

0, 
if b_1  1 (4.17a)

and

4
_ -J .. r -' " .- " % "- " . " ."." ' . ' .", ,q ' . -'- .,.-'-'. , . . ",',','.'
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4+ 42sinc2(ht/T) - o(Tobo-b/)sich/) if b_,.= -1. (4.17b)

Under the assumption that the delay power-density spectrum g(Q) is symmetric,

it is easy to see that similar expressions result from the consideration of

rw the signal components corresponding to negative delays and the effects of the

signal corresponding to bi.

By examining (4.16) and the expression for Z.i in (4.2), we can interpret

U as the average "power" in the desired signal component of the received

signal when a space signal is transmitted. Similarly, mV, represents the

average power in the interfering (undesired) component of the received signal.

.4.. The rles o m,, and mW are simply reversed if the desired signal happens to

ibe a mark signal.) Notice that (4.17a) indicates that no intersymbol

-1 interference is produced by the successive transmission of (b_1 1 b0 ) if

b1= bo, while if b-,1 - -b0 , the intersymbol interference produced by the

.\;..'data pulse preceding b 0 is given by the integral of (4.17b).

r Now consider the output of the matched filters for both positive and

negative delays for the transmitted sequence kij = (.+1,+1) in the absence of

.4additive noise. For the rectangular pulse waveform and integer-valued

MP modulation index, we see from (4.7), (4.16), and (4.17) that the moments MUU.

MVand mWV are given by

*E T

mv(+l.+1.+i) -0. (4.18b)

N mV(+1.+1,+1) -0 .(4.180)
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Hence, the total average power at the output of the space signal filter in the

absence of data modulation is given by (4.18a) as 32a2ET. Using (4.18a) and

(4.17b), we see that the portion of detector output due to interfering signals

relative to the total output is

mVV(-1,+I,-1) *2 +2 2 T= -211g(4) [ 2+ sinc2(h4/T)

mUu(+l,+l,+l) 0

-4[€oSl T(0,b]-ht/T)+cos(OT(1,bl)-nhC/Tl]4sinc(b/T )  d . (4.19)

From the discussion above, we conclude that the effects of intersymbol

interference are well characterized by

1 (he) = / mw(l,+l-l) (4.20)

which we take as the definition of the normalized rms multivath syread for FSK

communications in frequency-selective fading. From (4.19) it is clear that

Iv(h,G) in (4.20) depends on the phase transitions eT(i,bi) as well as the

modulation index h.

If it is assumed that the delay power-density spectrum g(4) is a unimodal

function, (4.19) provides a means to predict the role of the modulation index

and the phase transitions in determining the effects of intersymbol .

interference. A positive, real-valued function f(x) is said to be unimodal if

f is non-increasing for increasing xi. For example, the four models of delay

spectra discussed in Chapter 2 are unimodal functions. If g() is unimodal

and h is integer valued, it is easy to show, using (4.19), that the

sensitivity to the effects of intersymbol interference is minimized if the
.-

Common phase transition eT = 0 (i.e., CPFSK). Similarly, (4.19) indicates

that the effects of intersymbol interference are maximized when T = n, which

, . -.- ' '.'.-. ': '." ' ' '- ," ' ' ' .''", . "._- "L' : ,.' " : . : : - ,. . -T
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is the limiting case of phase-discontinuous FSK. These results are in

i U agreement with the irreducible error probabilities shown in Fig. 4.3 for the

rectangular pulse with h = 1. For this example, the assumptions OT = 0 and

"aT produce limiting error probabilities that can differ by more than an

order of magnitude. From this discussion, it is also clear that, for unimodal

-* delay densities and integer-valued modulation indices, the irreducible error

" " probability for random phases must lie between the values of PI for ST = 0 and

eT

As the modulation index increases, (4.19) indicates that the normalized

rms multipath spread becomes less dependent on the phase transition 0T. In

fact, it is easy to show that for increasing h, the normalized rms multipath

spread given by (4.20) approaches

Pv(M O) [ 2T g(). 2 d4 X]1 /T. (4.21)
0

U" U. where M is the rms delay defined in (2.3). We conclude that for large

modulation index and fixed rms delay, the irreducible error probability as a

function of M/T becomes independent of the shape of the delay density as well

S. as the phase transition 0

Now suppose that the modulation index is some fixed integer. If g(Q) is

unimodal, then for large values of ras delay, the value of ILV(h.e) is

- dominated by 21112 - 2T2pv(-O), which corresponds to the integral of the ..-

term in (4.19). This may be seen by noting that the integral of the

sinusoidal terms in (4.19) becomes small for increasingly wide delay spectra.

Alternatively, as the rms delay (and hence the first term in (4.19)) becomes

q usmall, the sinusoidal terms become significant so that I (he) is influenced

by the shape of the delay density as well as the phase transition OT . The

N-..

-~~~~ ~~~~~~~~~~~~~... ........ ... . ...... . ..... ...-..--. .. ....'..- . -.- -..-..- '... "-.-'-.. ...,-,,.. . -..-. ,%-.
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irreducible error probabilities in Fig. 4.4 for h = 10 provide a good example

of the behavior of systems with large modulation indices. Notice that PI for

this example depends on the shape of the delay spectrum only for rms delays

less than 0.01.

We next examine the characteristics of the parameters discussed above for

an example of non-orthogonal signals. In particular, for rectangular pulse

CPFSK with h = 1/2 (i.e., MSK), m,, (+1•+1,+1) = 32a2 ET as before. However,

,. i the normalized ras multipath spread is given by

v(h  y= T22 gs) L nT j -2Tos(,,•) "o"L n2M dt.(4.22)

By comparing (4.22) and (4.19), we see that if the delay density is unimodal,

MSK is considerably more sensitive to the effects of intersymbol interference

than signals with integer-valued modulation index. It can be shown that this A

increased sensitivity is partly due to the lack of orthogonality between the

two MSK signals. Notice that, in the absence of additive noise, (4.8b)

becomes

%32 T ( [ cos(nl/2T, 2+ 42sinc2 (Q/2T)) d4= 320 2ET.[- ] (4.23)
W, -- T g ) L /2T 

R2

for b, = (+l,+l,+1). Equation (4.23) implies that if three consecutive space

signals are transmitted, the output of the mark signal filter is more than

half that of the space filter, a property which holds even for nonfading

channels. In comparison, recall from (4.18b) that for integer-valued

modulation index, mVV(+l,+1,+l) = 0. This result and the data presented in

Fig. 3.3 suggest that MSK signals are of little interest for noncoherent

detection, especially for applications to frequency-selective fading channels.
4,-
. ,.,

0 2"

4. i
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In Table 4.1, numerical values of the normalized rms multipath spread

defined by (4.20) are shown as a function of the rms delay M for the Gaussian

delay power-density spectrum. The results are listed for signals with

-" ". modulation indices h = 1, 2. and 10, for 0T = 0 (CPFSK) and eT = w. Notice

that in the case of CPFSK. there is substantial variation between the

normalized rm. multipath spreads for different modulation indices. In fact,

for very small values of rms delay, this variation is nearly equal to h. Also

notice that in all cases, the difference between the values of normalized rms

* .- multipath spread for 0T - 0 and OT = fr are very large. It is also interesting

to note that for the case when 0 = n, there is almost no variation forT

different modulation indices. Numerical evaluations of the normalized rms

multipath spread for MSK signals revealed that this parameter ranges between

0.64 for M/T - 0.001 and 0.82 for M/T = 0.5, indicating that the parameter

u2 Pv(h,GT) is not a useful measure of the effects of intersymbol interference

for this case.

For the consideration of phase-coded pulses, it is much more difficult to

derive analytical expressions which provide insight to the character of the

normalized rms multipath spread pv(hO). Alteratively, consider the moment

MUU in (4.7) for the phase-coded pulse with modulation index h = N, where N is

S- the sequence length. If we neglect the terms corresponding to the additive

noise, BLUU(+I,+I,+I ) is given by

S0U()'[(hUl C- +R (h,1gp (h,l,4)Rp (h,1.4)] d4. (4.24)

Z Recall that R (h.1,.) and Rp(h,1.4) are given by Rp( , and RpQ,
*%*p .. p

* respectively, where these latter functions are the autocorrelation functions

given by (3.10) for the analysis of DPSK. Hence, in the absence of data

t.4

................................. ,..............-...-''. i.-........... ... -. ........ ..-..... ,.....
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Table 4.1. Normalized rms multipath spread # v(h,OT) as a function of the rms

delay K for rectangular pulse FSK with 
0 T = 0 and (0T = )

M/T h =1 h =2 h =10 ,.

------------------------------------- -------------------- -----------------

0.001 7.4081.106 1.4814-10-3 7.4049.10 -
(2.3915.10 - 3 )  (2.3914.10 - ) (2.3896.10 - 3

0.005 1.3602.10 -  2.7192.10 -  1.3419.10 -

' (9.9984 10 -3 (9.9938 10 -3  (9.8481-10 - 3 ) : .

0.01 5.438410- 4  1.085910- 3  5.115110 - 3

(1.9988.102) (1.9950.102) (1.8839.102)

0.05 1.0001.10 - 2 2.5776.10 - 2 5.4470.102

(9.8481.102) (9.4197.10-2) (5.5126.10
- 2)

0.1 5.0002.10
- 2 8.650710

- 2 1.025010-1

(1.8839.101) (1.6123.101) (1.0250"101)

0.5 5.0000•10 1  4.5710101 4.4052•101

(4.8907.101) (4.5099.101) (4.4026.101) p

-i

p..

................. ...................... S'
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*modulation, the average power at the output of the space signal filter is

"+i

given by 1602EH /T. where the parameter H is defined by the relation (3.22).

p

-. for a Gaussian delay density as a function of the rms delay M.

+ ...

- In Table 4.2, the values of the p (h ) with h N are shown for phase-
PD

coded pulses with sequence lengths N 7 and 31. Also listed in Table 4.2 are

the values of P(h,O) for modulation index h - 1 (shown in parentheses). In

each case the results are obtained for 4T - 0. Surprisingly, these results

indicate that the normalized rus multipath spreads are generally smaller for

• -. h = 1 than for h - N. From the similarity of the results for h N and h = 1,

we conclude that the sensitivity to the effects of intersymbol interference is

* - largely determined by the autocorrelation properties of the phase-coded pulse

waveform rather than the value of the modulation index. From this we might

*also assume that the normalized rms multipath spread is relatively independent

of the phase transition 4T. The evaluation of 5p(h.GT) with OT - m for the

cases listed in Table 4.2 shows that P (hf differs from the values listed in

* -' Table 4.2 by at most a factor of two. Also notice that there is no clear

dependence of pv(hOT) on the sequence length. N. Finally, we point out that

in comparison to the corresponding results for phase-coded DPSK listed in

* .: :Table 3.3, it is clear that phase-coded pulse FSK is, in general, much more

sensitive to the effects of intersymbol interference.

The discussion leading to the expression for mUV in (4.18c) also provides

an interesting interpretation of the role of this parameter in determining the

performance of FSK. Recall from Chapter 2 that the rms delay M is related to

Ld " the bandwidth of the frequency correlation function G(O). For small rms

*. delays (large frequency-correlation bandwidths), there is significant

!iI.1
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Table 4.2. Normalized rms multipath spread gv (h,0) as a function of the rms

delay M for phase-coded pulse FSK for N 7,31 with h N and
(h = 1)

M/T N = 7 N = 31

0.001 9.6176.10- 3  3.8895.10 - 2

(3.3950-10 - 3 ) (4.4933.10 - 3 )

0.005 4.1005.10 - 2  1.6159 10- 1

(1.4575.10 -2) (2.0919.102)

0.01 8.2911.10- 2  2.7283-10 - 1

(3.0111.102) (4.7569.10 -2)

0.05 3.1451.10 -1 3.8556.10- 1

(1.9162.10-1) (2.5002.10-1)
0.1 4.0232.10-1 4.025710-1

.', (3.9451.10 - 1 ) (4.3055.10- 1)

0.5 7.0356.10- 1 6.9406.10 - 1

(8.3483.10 -1) (9.2494.10-1)

C.'

9.t

.'

-. . . **5 . S*5. 5 .
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correlation between the fading processes acting on the two signals. The

parameter that characterizes the relationship between the effect of frequency

correlation and the orthogonality of the transmitted signals is mIN(+1,+1,+l )

(or more precisely, mUV(+,+I,+1)/muu(+,+I,+I)). For the rectangular pulse

waveform and integer-valued modulation index, we see from (4.18c) that

.muv/muu m 0. In contrast, it is easy to see from (4.7c), that for MSK

signals,

t-2 .T 2jT
,.(+I,+,+1)/mUU(+= - ) g( )[ dt (4.25)

2 0

which not only shows that the received signals are highly correlated but also

shows that the value of the correlation is independent of both g and M.

Notice that the square of the magnitude of (4.25) corresponds to the result in

(4.24), confirming that the lack of orthogonality of MSK signals is a

significant factor in determining resulting error probability for both

selective and nonselective fading channels. Finally, we point out that the

close relationship between the values of mUV(+l,++l) and mVV(+l,+l,+l) for

r- the rectangular pulse waveform does not hold for phase-coded pulse waveforms.

In fact, for N - 31 and Gaussian delay density with M/T = 0.001, numerical

evaluations of these parameters reveal that mUV mV/10 and mUV mVV/100 for h

- 31 and h 1, respectively.

The discussion leading to the definition of the normalized rms multipath

* -spread in (4.20) and the results in Tables 4.1 and 4.2 suggest that the

normalized rms multipath spread is a good indicator of the effects of

intersymbol interference for both rectangular pulse and phase-coded pulse with

,'J integer-valued modulation index. Since the irreducible error probability is

the performance parameter most dependent on the effects of intersymbol

~~1
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interference, we expect that if the delay spread is normalized with respect to

AV(hOT), P, should exhibit minimal sensitivity to either the signal format or

the shape of the delay power-density spectrum g(g). Numerical evaluations of

P1  as a function of the normalized rms multipath spread show that of all

examples of pulse waveform, modulation index, and delay density considered,

the cases exhibiting the most variation are rectangular pulse waveforms with h

= 1 for 0 = 0 and 0T v. The irreducible error probabilities for these two

cases are shown in Fig. 4.5 as a function of pr(hOT) for the Gaussian,

exponential, and triangular delay densities. Notice that even for these

extreme cases the maximum variation for fixed normalized rms multipath spread

is less than a factor of 1.4. These results show that the limiting error

probability is almost completely determined by the normalized rms multipath

spread p (h,0T) defined in (4.20).

Before concluding the discussion on the characterization of the effects

of intersymbol interference, it is interesting to draw comparisons between the

normalized rms multipath spread parameters for IPSK and FSK. In particular,

" notice from (3.23) and (4.21), that for large h, the parameter g'(he) =r

S"which is the normalized rms multipath spread for rectangular pulse DPSK.

Thus, for fixed rms delay M and sufficiently large modulation index, the

irreducible error probability for rectangular pulse DPSK is a good

approximation for PI for FSK.

* Next, notice that the parameter p for sine pulse DPSK is given by

f g(Q) [4 2 COS 2 (n4/T) + 242 sinc2 (t/T) - 2k2 cos(n4/T)sinc(Q/T)] d4 (4.26)

_ For the case when the phase transition 0T = 0, (4.20) becomes (except for a

constant factor),
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S(+) [2 + 242sinc2 C(/T) - 2t2 cos(n4/T)sinc(Q/T)] dt. (4.27)
0

Hence, we see that sine-pulse DSPK is considerably less sensitive to

-' intersymbol interference effects than FSK for any integer-valued modulation

index, even for the minimizing case of phase transition, eT = 0.iT

4.2.2 Effects of Intersymbol Interferenc: Bounds

As in the consideration of DPSK in Chapter 3, the insensitivity of the

irreducible error probability for FSK as a function of the normalized rms

multipath spread suggests the possibility of obtaining useful bounds on the

probability of error with respect to the parameters of the fading channel. In

this section, the method of obtaining bounds on the irreducible error

probability for DPSI communications in a frequency-selective Rayleigh fading

environment is applied to the evaluation of P1 for FSK.

It is clear from the definition of p v(hGT) in (4.20) and the discussion

above that the normalized rms multipath spread is dependent on the phases

eT(i,-l) and OT(i+l,-l). However, the results in the previous section

indicate that eT(i-) = eT(i+l-l) OT= 0 and OT(i,-l) = OT(i+l-) = 0T =

x in some sense represent limiting cases in terms of the normalized rms

multipath spread. In what follows, the bounds for the irreducible error

probability are considered for these cases only. The resulting bounds for

these cases are representative of, if not limits for, the results for other

choices of phases.

4.2.2.1 Lesansar nulsea..

Under the assumption of adjacent-pulse-limited ISI, the moments defined

in (4.7) can be written (for integer-valued modulation index) as
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16 +ET- 272 + Mb (4.28a)

mtubi) . 16a 2 E/T.[ M(bi- = + I(b i+-1).T f(h,e)] (4.28b)
.4

and

6 16,26/r.[ I(bii-)-flf(g)+ I1bi.l--- )f'ls) ( , (4.280)

where the normalized tis multipath spread JLv(hOT) is given by (4.20). and

If.) is the indicator function. The functionals fl(s) and f"(g) in (4.28) are

given by

f'(I) 0 (4) [2 24T + 42 sinc2(/T)

+ 2(T-)4 Ecos1 /T+OT) sinc(/T)] d, (4.29)

and

.4. Yf 0 (I) - S1V [2(-T)eJ(xh4/T)'sinc(4 I T)

+ cos(OT)(T-4)42"sinc(4/T) - 4 2 oos(OT)sin 2 (4/T)] d. (4.30)

Thus we may proceed as in Chapter 3 by characterizing the functions f'(s) and

f"() for delay spectra s1() satisfying the constraint, given by

T S [g 2 + 42 sinc2(4/T) - 242Oos(O wTrv/Tsinc(/T)] dt
0

= MOl(h.OT). (4.31)

Notice that f" is, in general, a complez-valued function of g. From (4.5) and

(4.6) we see that the average probability of error depends on the moment

3uv(bi) only through its magnitude. Hence, in order to obtain bounds for the

Ak% . . . . . . . %,. %,--"% "% ''"% .- "" "" % ''%-
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error probability, it is necessary to characterize the range of values of

If"(S)i for g satisfying (4.31). Recall from Chapter 3 that the minimum and

maximum values of a continuous linear functional are found by searching over

the set of extremal g. Since If"(g)l represents a non-linear functional of a,

this technique cannot be directly applied to find the minimum and maximum of

If". However, it can be shown, through an application of the triangle

inequality, that the maximum of If"(g)l for g satisfying (4.31) is obtained

for some extreme S. The characterization of the possible values of If"I is

completed by assuming that the minimum of If(g)I is zero. Also, notice that

if bi I = bi+1 = -1, a" depends only on f" + f" 2Reff') so that the

problem of a non-linear functional does not arise in this case. The resulting

bounds for the limiting error probability are found by searching over the

volume

[fainf=ax] X [0,If"Imax ] X [2 Re(f"Jmin, 2 Re[f")max] I-

Numerical evaluations of the resulting bounds for the irreducible error M

probability reveal that the maximum variation between the upper and lower

bounds for fixed Pr(hTeT) occurs for the case h = 1 and ()T = 0. The results

for this case are shown in Fig. 4.6 as a function of r (1,0). Notice that the

maximum variation for this example is still less than a factor of 3. We point

out that the bounds in Fig. 4.6 not only represent the case of the maximum

variation, but also represent upper and lower bounds for all examples of "

rectangular pulse waveforms considered. That is, the bounds for rectangular

.%. pulse FSK, with modulation indices h - 1, 2, and 10 for the cases 0T = 0 and

T x, all lie between the bounds shown in Fig. 4.6.

F-
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4.2.2.2 Phas-coded puls

. The task of obtaining bounds for the irreducible error probability for

phase-coded pulse FSK is more difficult than for DPSK since Pi for FSK depends

on essentially twice as many parameters (a number of which are complex valued)

as the limiting error probability for DPSK. Under the assumption of

adjacent-pulse-limited ISI, the function EVV-I,+I,-I) can be written as

mV(-l,+l,-l) - p2(h,DT)HP ( (4.32)
UP

As in the case for phase-coded pulse DPSK, there is no obvious way to

characterize the moments uub(hi), nv(hb), and muv(bi) in terms of the 0

normalized rms multipath spread p (h,o) and a few linear functionals of g.
p

Also, we have seen that nUU(+l,+I•+1). which is closely related to the

parameter np defined in (3.22) is dependent on the shape of the delay power-

density spectrum. Moreover, unless the rms delay is zero, both MUv(+l•+l•+l )

and m.V(+l,+l+l) can be significant in the determination of the irreducible

error probability.

However, representative bounds on the irreducible error probability can

be obtained by assuming a specular multipath model for the fading channel, as

in Chapter 3, with a sampling epoch chosen so that a path with average power

of at least l/2N of the total power of the delay spectrum corresponds to a

zero relative delay. We proceed by using the model for the discrete density "-.
-.

spectrum g(kT ) and rewriting the equivalent signal-to-noise ratio T(ki) in

(4.6) as

2 Im.m(ki)-, (ki) I""

.(4.33)
k ) ki) 12 +4 [uul(kij) E(ki)lu (ki) 12] -ImUU(ki)-mVV(ki) I

't * 
'r.
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The bounds for the irreducible error probability are found by characterizing

p the minimum and maximum values of the parameters (mUU(ki)-mvvy(b i)) and

1(mUU(bl)MVV(bi)_imUVlb) 2) for each combination of the interfering data bits

(biI and hi+1) under the constraint

-::-VV(-l.+l.- - , (h.OT)Hp

Using the assumed symmetry properties of the delay spectrum g(kTc) the search

for the minimum and maximum irreducible error probability can be reduced to

the six-dimensional search over the limiting values of the two functions

.7 described above for the cases bi_l=bi+l=l bi lbi=l,-1  and b -bi+l . The

resulting bounds for the irreducible error probability of phase-coded pulse

waveforms are given in Tables 4.3 and 4.4, respectively, for i-sequences of

length N - 7 and N - 31 discussed above. Notice that the variation between

upper and lover bounds is not large, and that the bounds for the phase-coded

4. pulse are very similar to those obtained for the rectangular pulse above.

4.2.3 Effects of AddLtive Noise: Characterization

Consider the response of the space and mark filters (producing the

sampled outputs U and V) to a single transmitted data pulse signal,

(st) -s v(tle-Jb0zht/T ; 0 1 t I T ,

where E is the energy per data bit. In the absence of additive noise and

assuming a space signal is sent, the second moments of the outputs of the

space and mark filters are given by

2- 2

m 162E

- 1 - G( ) (IV(f) I9lV(Q)12] d , (4.34a)

T.L
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Table 4.3. Irreducible error probability bounds for N = 7 phase-coded pulse
FSK with respect to the normalized rms multipath spread p (hO),

for h = 7, and 0T 0

A p(hO) Lower Bound Upper Bound

0.0005 1.2499.10-7 1.2504.10- 7

0.001 4.9999.10- 7  5.0060.10- 7

0.005 1.2499.10- 5 1.2887.10- "
U

0.01 4.9998.10- 5  5.6829.10 - 5

4-3

0.05 1.2488.10 -  4.9551.10- 3

! .

Table 4.4. Irreducible error probability bounds for N 31 phase-coded pulse

with respect to the normalized ms multipath spread gp(he), for
1. h = 31 and eT 0

P p(h,0) Lower Bound Upper Bound

0.0005 1.2499•10 - 7  1.4131•10 - 7

0.001 4.9999.10 - 7  9.2896.10 - 7

0.005 1.2499.10- 5 4.4880.10-5

4..
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and

MW 16a E I:s k R(h.-1,II)I12 dt
16a6o2E

G() [V(D-2h/T)V (O)SV(Q-2nh/T)V(Q)] dO, (4.34b)
T

where V(Ol is the inverse Fourier transform of the basic pulse shape v(t), and

S denotes convolution. Notice that (4.34a) represents a measure of the common

spectra between the data pulse waveform and the frequency correlation function

G(O). Similarly, (4.34b) represents a measure of the common spectra of v(t),

* a frequency shifted version of v(t), and the correlation function G(O). The

corresponding output of each filter due to the (real) additive white Gaussian

4 noise with (two-sided) spectral intensity N0 /2 is SNoT.4

For a nonselective Rayleigh fading channel, the signal-to-noise ratio at

3 athe output of the space filter becomes

snr M 2 2
4. - .(4.35)

N0

3since, from (4.10a), 11(ho,O) = T2 . Thus, it is easy to see that the one-

shot signal-to-noise ratio at the output of the space signal filter is

maximized when the rms delay spread is zero. In the case of frequency-

selective fading, the signal-to-noise ratio at the output of the desired

signal filter is

i22E 2.21 -

sn,- g(o2E 2 (h -- 2 v/T' (4.36)

a,-
Recall from (4.10a) and (3.14a), that I(h.l, ) = l(i) so that 'qv defined in

(3.12a) for the consideration of DPSK communications is also the key parameter

in determining the signal-to-noise ratio for the space signal filter for

4 ..

. . . , . . , . € - _ € ., j . . .- .-. , ' . . .' .' . -. . .: .' _ .' . '. . € . .' -' i ' . - -' -' . ' . ' , . . -' -' . -' , ' . 4 " " , " - " . , - " £ " • ' p .
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single-pulse matched filter detection. If we neglect the effects of

intersymbol interference and assume that the modulation index is sufficiently

large that the signal components of both IV, and mUV are approximately zero,

the average error probability (4.5) becomes

2a2 E 2 Iv -1
pe 2+ 0 112(4.37)

which is identical to (3.38) except for a factor of two appearing in the

signal-to-noise ratio.

* The results in Section 4.1 (see Fig. 4.2) demonstrate that for

rectangular pulse FSK with integer-valued modulation index, the low signal-

to-noise ratio average error probability in frequency-selective Rayleigh

fading is well approximated by Pns = (2 + 202E/N0) -1 which is the probability

of error for orthogonal FSK in non-selective fading. While it is not

surprising that Pns represents a lower bound for the average error

probability, it might not have been anticipated that this performance

parameter for orthogonal signals would provide an adequate low signal-to-noise

- ratio approximation of P for selective fading. In particular, notice from

(4.35) that even in the case when a single data pulse is transmitted, the

relative delays introduced by the frequency-selective channel produce non-zero

outputs in both filters. Thus, in general, the transmission of a space signal

4 also produces an output due to this signal at the mark signal filter.

However, it can be shown that Pns is an accurate low signal-to-noise ratio

approximation of the average probability of error in selective fading for

rectangular pulse FSK for any integer-valued modulation index h.

The discussion above indicates that the low signal-to-noise ratio error

4. probability is largely determined by the output due to the desired signal at

-I
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the filter matched to that signal, which in turn, depends only on the

parameter iv. Thus, we expect that for a given pulse shape, the asymptotic

error probability for small signal-to-noise ratios is well approximated by

(4.37) which is independent of the modulation index h. Numerical evaluations

of the average error probability in (4.4) and P defined in (4.37) show that

* this is the case for both rectangular pulse and phase-coded pulse FSK, for all

combinations of delay spectra, modulation indices and phase transitions

considered. In fact, the average probability of error for phase-coded ,.te

FSK is both well approximated by (4.37) for small values of signal-ti _Nise

ratio and lower bounded by (4.37) for all values of sr. Hence, just , "ir

DPSK, the parameter iv determines the position of the "inverse-linear" lower

bound on FSK error probability as a function of signal-to-noise ratio S =

S2a2/3 N0. Of course, the factor of two (or 3 dB) difference between (4.37) for

FSK and (3.38) for DPSK reflects the disadvantage of noncoherent versus

J% differentially coherent detection in Rayleigh fading channels.

In Table 3.7 of Section 3.2, the values of Wv/T2 are listed for the

"- rectangular pulse, and for the phase-coded pulse using the u-sequences of

' '. length N - 7, 15, 31, and 63 for a Gaussian delay power-density spectrum. It

can be shown that for phase-coded pulse FSK,

'2+N2 .._U] (4.38)

independent of the modulation index h, where N is the length of the signature

sequence and the constant k depends on the channel. Moreover, the discussion

in Section 3.2 concerning the performance degradation of the phase-coded pulse

relative to the rectangular pulse for DPSK applies to the consideration of

phase-coded pulse versus rectangular pulse FSK. In particular, Table 3.7

-Ni. . . .-" . - - . ,. - - . •. - -. -. ., . %. .% , . . % • "
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shows that for a Gaussian delay density with MIT = 0.1, the additional

signal-to-noise ratio requirement for phase-coded pulse FSK relative to

rectangular pulse FSK for fixed error probability is about 5 dB and 9 dB for

sequence lengths N = 7 and N = 31, respectively.

In Figure 4.7, the average error probability for several examples of FSK

signalling formats is shown as a function of the signal-to-noise ratio, S.

For comparison with the results for DPSK in Figure 3.7, the results are shown

for rectangular pulse FSK with modulation indices h = 1, and 10 (9T 0) and

phase-coded pulse FSK (N = h = 31, eT = 0) for the Gaussian delay power-

density spectrum with rms delay M = T/10. Also shown are the low signal-to- LJ

noise ratio asymptotes given by (4.37), and the irreducible error

probabilities which appear as horizontal asymptotes. (The low signal-to-noise

ratio error probability given by (4.37) is identical for both examples of

rectangular pulse FSK). Notice that in contrast to the results for DPSK in

Section 3.2, the limiting error probability for the phase-coded pulse is

* considerably larger than that of either example of fectangular pulse FSK.

Also notice that the rectangular pulse with h 1 exhibits the best

performance of the three FSK signals considered for the entire range of

signal-to-noise ratios. These results are in agreement with the discussion

- leading to (4.37) which shows that the phase-coded pulse experiences severe

performance degradation in the presence of additive noise; and the data

presented in Tables 4.1 and 4.2 which show that the normalized rms multipath

spread p v(h,GT) for rectangular pulse FSK (with modulation index h = 1, and

phase transition T 0) is significantly smaller than the corresponding

parameter for phase-coded pulse FSK.

4.°

S.
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P (phase-coded)

pa (phase-coded)
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P (rectangular, h-1)

. 5

,4 P (rectangular, h-1,10)

,29 m 6s

Fiur 4. | .7. Aveag ero(rbbiiyrrectangular ulse)h 1,10

.n OT ) n - p l (

S Is a , .s

Signal-to-noise ratio, S(dB)

5. Figure 4.7. Average error probability for rectangular pulse FSK (h = 1, 10,

. and T = 0) and phase-coded pulse FSK (N - h - 31. and T = 0)
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4.3 Performance Avroximations for Other FSK Systems

In Section 4.2 it was showL that meaningful bounds for the irreducible

error probability of FSK in a WSSUS frequency-selective Rayleigh fading

channel can be obtained under assumptions that correspond to the

characteristics of many practical systems [16,17]. These bounds demonstrate

that the normalized rms multipath spread gv(heT) defined in (4.20) is the key

parameter in determining the limiting error probability for FSK systems.

Moreover, the closeness of these bounds (for fixed normalized rms multipath

spread) indicates that it is sufficient to specify only this parameter in -"

order to obtain an accurate estimate of the irreducible error probability for

a particular fading channel and FSK signalling format.

Since in many practical systems, the limiting error probability is of

primary concern in the evaluation of system performance, the bounds in Section

4.2 represent a characterization of the limits of the effects of frequency-

selectivity on FSK communications for a wide variety of signalling formats and

frequency-selective fading channel models. As in the case of DPSK in Section

3.3, these results also imply that if it is possible to measure the normalized

rms multipath spread parameter for a proposed FSK system, then we can obtain

an estimate of the average probability of error for this system from the error

probabilities in listed in Section 4.2.

In particular, it was shown in Section 4.2 that the irreducible error

probability as a function of the normalized rms multipath spread for

rectangular pulse FSK for any integer-valued modulation index and any phase

transition is bounded by the results presented in Fig. 4.5. Also, comparing

the results in Tables 4.3 and 4.4 with Fig. 4.5, we see that the irreducible

3?52
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error probability for phase-coded pulse FSK as a function of p(h DT) closely

approximates the irreducible error probability for rectangular pulse FSK as a

function of Ir(h.eT). Hence, the results presented in Fig. 4.5 represent what

"* is essentially a single relationship between the irreducible error probability

P, and the normalized rms multipath spread pv(h,$T) for FSK in a frequency-

selective Rayleigh fading environment. Thus, we can take the data in Fig. 4.5

as representing the irreducible error probability as a function of p (hGT)

'77 for a generic FSK signalling format with time-limited data-pulse waveform

v(t). The limiting error probability for a particular FSK system may be

approximated by means of a single channel measurement,

p. Jv(hO- m• (4.39)

Using this measurement, the resulting approximation for the irreducible error

probability is found as the corresponding value of PI in Fig. 4.5.

Notice that this performance parameter is more complicated than the

corresponding result in (3.40) for DPSI. Unfortunately, it is not clear that

-' a less complicated form of channel measurement would provide information that

' is adequate for determining the limiting error probability. However, for the

, P special case of rectangular pulse FSK, the results in the previous section

indicate that an accurate estimate can be obtained from a less complicated

channel measurement. In particular, for rectangular pulse waveforms,

nUU(+l,+l,+I) is independent of the modulation index h and the phase

transition OT (of. (4.18a)). If, in addition, the modulation index is large,

the channel may be characterized by measuring the value of

&' (WO0) a IyT21 Tg(C).42 dt 1/ (4.40)

=,.4
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which is equal to both the normalized rms multipath spread for rectangular

pulse DPSK and the multipath spread p = M/T. For rectangular pulse FSK with

smaller modulation index where the phase transitions are modeled as uniformly

distributed random variables, (4.19) and the results in Table 4.1 indicate

that (4.40) also gives a reasonable estimate of the limiting error probability

for this case.

A good estimate of the average error probability for small time-bandwidth

product pulse shapes is realized as a curve lying above P in (4.12) and P-
nsI

calculated from (4.40) and the data in Fig. 4.6 which asymptotically

approaches Pns and PI for extreme values of the signal-to-noise ratio. For

large time-bandwidth pulse shapes, a more accurate approximation may be

obtained by additionally measuring the quantity

2jiu/T S g( K R(h.1,I4I) dt g() 117(141) dt (4.41)

and replacing P by the low signal-to-noise ratio asymptote given in (4.37).

If, in the absence of a complete channel characterization, it is possible

to obtain close estimates of the parameters discussed above, these

approximations could be used in the preliminary evaluation of FSK systems

employing complicated signals. Alternatively, if a fairly accurate model for __

the delay power-density spectrum can be obtained, the definition of the

normalized rms multipath spread (4.20). the data in Fig. 4.5, and the

expression for the low signal-to-noise ratio error probability in (4.37) may

be used for comparative evaluations of FSK signalling formats and data-pulse

shapes.

Finally, we point out the several basic similarities between the above

results for the approximations of FSK and the approximations for DPSK

-p.J
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discussed in Section 3.2. In particular, the low signal-to-noise ratio

asymptotic error probabilities for any particular data-pulse shape are

identical for DPSK (3.38) and FSK (4.37) except for a factor of two increase

in effective noise power for FSK. Also, the normalized rms multipath spread

for rectangular pulse DPSK is similar to the normalized rms multipath spread

for rectangular pulse FSI, especially for large modulation indices. The

- relationship between the low signal-to-noise ratio performance of the two

systems might have been predicted by noting that DPSK can be viewed as a form

of binary orthogonal signalling with signal duration 2T. In contrast, the
.7

.* . relative effects of intersymbol interference on the two binary orthogonal

signalling systems do not appear to be related to the basic similarities

between system models. In particular, it is not immediately apparent that

rectangular pulse FSK exhibits the same sensitivity to intersymbol

interference as rectangular pulse DPSK only for very large modulation indices.

Nor was it expected, prior to the development in Section 4.2, that it is

possible to choose a time-limited pulse waveform for DPSK (sine-pulse) that

. produces lower error probabilities than any standard (i.e., rectangular pulse)

* form of FSK communications over the same fading channel.

.,

4.4 A&niIatignu .to F urgquno-Seloctive Rician Channels

In this section it is shown, in a development that closely parallels

Section 3.4, that when the received signal contains a nonfaded specular

" component as well as a hyleigh faded component, the average error probability

depends on the same key parameters identified in the preceding sections of

this chapter. With the parameter a > 0 in (2.3) representing the strength of

% the specular component, the decision statistic Z in (4.2) is a quadratic form

'4 .~
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of (nonzero mean) Gaussian random variables U and V. As in the analogous

situation for DPSK communications, the probability of error, given a

particular sequence of data bits (hi) is transmitted, is given by a value of

the probability distribution of the ratio of Chi-square variables with non-

centrality parameters dependent on the characteristics of the FSK system. In

the remainder of this section, we show that the average probability of error

for FSK in Rician fading is completely determined by the parameter a in (2.3)

and the moments muu(bi), mvy(ki), and m&v(k i) defined in (4.7) for the

evaluation of the error probability for Rayleigh fading channels.

In particular if we assume, without loss of generality, that b. = 1 inI

(4.1), so that a space signal is transmitted during the i-th signalling

interval, the conditional error probability [191 can be written as

P(k. d (VAh- _k)

mub+mvbi))2.- 41xmu(ki) + uubil-M "--

2 l(muulb)+Iv(bi))2 - 41mu(bi) 12 II

A(bi) +B(bi)
•exp[- 2i)Bi Io('iA(bi)B(ki)) (4.42)

2

where Q(.,.) is Marcum's Q function, and Io(x) is the modified Bessel

function. The parameters A(bi) and B(ki) in (4.42) are given by

A(ki>)- 8e2ET.[ nUU(ki) + mvV(i) - V/(' (Ia+mv(bi > j 2-41mUV(ki)12 (4.43a)

(uu(b)+NVV(k i))
2 - 4ImU(bi) 12

and

Blbi)-8S 2ET,[ mQ2(bi) + myy(ki) + 1(mUu(ki)+mvv(ki)) 2 -4ImUV(ki12 ].4.43b)

/ (iV V (ji) 1)2 - 4ImUji) 12

%4~~~~~Z -7~~?' .. **. . ..- .- * *.~.'*..



7v-X -7 , , . . . i. . , - . . . , .. , - . - -

107

4. ' .,

The moments. MXy(k) in (4.43) are the central moments of the random variables

U and V defined in Chapter 3. Using (2.3) and (4.3) for the signal defined by

(4.1) and assuming a space signal is sent, we see that E(U) - a48ET and E(V

. 0 so that the moments in (4.43) are precisely the same as those defined in

(4.7) for the analysis of Rayleigh fading channels.

It is easy to see that (4.42) reduces to the error probability

expressions for Rayleigh fading (see (4.6) and (4.8)) when a 0 0. In this

case, A(ki) = B(ki) - 0. and (4.42) becomes

'"i' [ '(1UU(h VV(bki)) 2 - 41-UV(ki)1 2 + ImU( W(k)i-. 2 u(khi)3 -1(kbi)) 2 - 41m i) 2, 'P.4--. .J 4. 4

which is identical to (4.6) for the case bi - 1. Alternatively, if there is

no faded component in the received signal so that the channel is simply the

additive white Gaussian noise channel, then 2a2 0 in (2.4) and the moments

in (4.43) become

"uu " vv" 8NoT

and

um0.

If bi - 1 and the transmitted signals are orthogonal, then A(ki) 0 0, and

B(ki) - 2a E/N0 and (4.42) becomes

PIi) - j .xp[ -_! °]
.. N0
(since Q(O,z) - ezp(-z/2) [61) which is the average error probability of FSI

* for the additive white Gaussian noise channel.

9'
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ADAPTIVE EQUALIZATION TECHNIQUES FOR DIGITAL COMMUNICATIONS

OVER FRBQUENC-SELECTIVE FADING CHANNELS

In Chapters 3 and 4, the performance of differentially coherent (DPSK)

and noncoherent (FSK) communications via WSSUS frequency-selective fading

channels was considered. It was shown that the average error probability for

these systems is degraded by two effects that are each closely related to the
q

multipath spread of the fading channel. The first effect is that of loss of

available signal energy due to time-dispersion of the desired signal beyond

the sampling window of the matched filter receiver. While this effect causes

minor performance degradation for small time-bandwidth product signals and for

adjacent-pulse-limited ISI, it can become a major consideration for large

time-bandwidth product signals, and for channels which are more severely

frequency-selective (dispersive in time). "I
The second adverse effect is due to the intersymbol interference

introduced by the superposition of delayed versions of the transmitted signal

at the channel output. The results in previous sections demonstrated that it

is this effect which most severely limits the performance of digital -.

communications over frequency-selective channels. In fact, we see from

Figures 3.7 and 4.7 that for rms multipath spread p as small as 0.05,

intersymbol interference can result in irreducible error probabilities that

are unacceptably large for many applications. Notice that the parameter p -

MIT is a linear function of both the rms delay M defined in (2.3) and the

data-bit rate lIT. Within the past decade, there has been increased interest

in applications for high-frequency (my) and troposcatter communications

77
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[7,14.23,40] for which the rus multipath spread p : 0.5. For all examples of

delay spectra and modulation formats considered in previous chapters, the

irreducible error probabilities resulting from this degree of frequency-

selective are substantially larger than 10- . Thus, in order to achieve

reliable communications over dispersive fading channels, it is necessary to

employ more complicated receiver structures which are less sensitive to the

effects of intersymbol interference.

*. For channels, such as telephone lines and line-of-sight (LOS) microwave
%,

links, both linear and nonlinear equalizers (typically in the configuration of

S. a tapped-delay-line (ThL)) have been effectively used to reduce the effects of

intersymbol interference [20]. More recently, there has been interest in

,- ., applications of similar equalization techniques to improve the performance of

digital communications over classes of randomly time-variant linear channels

[8,23]. The majority of channels for which equalization techniques have been

considered are accurately modeled as WSSUS frequency-selective Rayleigh fading

channels. While it is clear that the random character of the fading channel

presents a number of additional difficulties (e.g., zero-mean unequalized .

N signal amplitude) which must be overcome through the use of diversity or some

form of redundant transmission, both simulation studies [8,24.41-43] and

/. experimental evidence [14] indicate that for a given data rate, reliable

communications can be achieved for fading channels with rms delays which would

produce unacceptable limiting error probabilities if the system were not

equalized. Alternatively, for a fading channel with a given value of rms

multipath spread, equalization allows an increase of an order of magnitude in

data rates for a specified bit-error probability [7].
"!

.5!
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Studies of equalization techniques for non-fading dispersive channels

(e.g.. high-speed digital telephone links) have been concentrated on linearp..

equalizers, in general, and on linear TDL equalizers, in particular [21].

'V However, one of the characteristics of WSSUS frequency-selective channels is

that the time-variant transfer function frequently exhibits nulls at various

portions of the spectrum which result in "deep" fades of the spectrum of the

" received signal at these frequencies [9,13]. The primary goal of the

equalizer is the elimination (or reduction) of the effects of intersymbol

interference. More generally, the goal of equalization is to realize an

equalizer filter such that the combination of the channel and equalizer yields

an equivalent "channel" with flat frequency response [44]. Since practical

linear IDL equalizers can only realize equalizer filters with Z-transform

transfer functions consisting entirely of zeroes [21], linear equalizers are

not well suited for applications to WSSUS frequency-selective fading channels

There are several nonlinear equalizer structures that can be used to

compensate for channels with nulls in the frequency response [21]. The

nonlinear equalizer structure that has received the most attention, because of

its relatively uncomplicated implementation and demonstrated effectiveness, is

the class of TDL decision-feedback equalizers (DFE) [8,23]. The form of DFE

receiver considered for applications in fading channels consists of a linear

1DL equalizer operating on the received signal at some intermediate frequency

(or passband [45]), a filter matched to the transmitted data pulse shape, and

an additional TDL operating on the results of the (nonlinear) decisions of

previous data symbols. The performance of the TDL equalizer strongly depends tit

on the effectiveness of the linear TDL portion of the equalizer [24,441. In

.JV.'
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what follows, the characteristics of DFE equalizers are considered by first

discussing the characteristics of linear TDL equalizers.

";- 5.1 Linear Eaualizer Characteristics

* ' A model for a linear tapped-delay-line equalizer with l + K2 +1 taps is

*.5 --., shown in Fig. 5.1. Using narrowband signal representation, the input to the

equalizer is given by

r(t) = J hlt,C) s(t-C) dt + n(t) . (5.1)

The time-varying channel response function h(t,t) is assumed to be that of a

WSSUS Rayleigh fading channel as discussed in Chapter 2 an4 n(t) is the

equivalent low-pass Gaussian noise with (one-sided) spectral intensity N0 .

£ The tap-weight vectors a and d in Fig. 5.1 represent the real and

, .. imaginary parts of the equivalent complex-valued tap-weight vector E = s. - jd.

We have, for simplicity, dropped the dependence on the time reference t. The

,-. remainder of the receiver is composed of in-phase and quadrature correlation

~ -~r eceivers such as those shown in Fig. 3.1, which operate on the in-phase and

"- quadrature outputs I(t) and Q(t) of the TDL equalizer. The sampled output of

-. 5. the composite receiver is given by
2%

'T".U - 2 VW • rolt) dt (5.2)

*5%.4% ,.4 where r0(t) - l(t) - JQ(t) is the output of the 7DL equalizer and the slowly

time-varying phase 0 represents the combined phases of the transmitter, the

channel, and the receiver. It is convenient to represent the output U in

1 .4 terms of the vector sun of the equalizer output as

'k_
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U = w1 f' b + 2w' n , (5.3)o h d w f t

where M' represents the conjugate transpose of the column vector w, T is the

..;, duration of the data pulse waveform v(t), and E is the transmitted energy per

q~him . bit. The tap-weight vector wl in (5.3) is given by M' = [ws_1
byx _=Kw[ ... ,w0, ..

-where (K +K+1)T is the width of the time window of the received signal

rlt) represented by the equalizer output rolt). The vector k represents the

sequence of data bits which have influence on the receiver output U. Notice

that the length of b depends on the number of equalizer taps as well as the

time duration of the channel impulse response function h(t,4).

Simulation studies [24] of the performance of linear TDL equalizers are

. ." often based on the assumption that the channel response to an impulse at t = 0

is non-zero only for relative delays 4 in the range [-T,T]. Notice that this

Vis similar to the adjacent-pulse-limited ISI assumption used in Chapters 3 and

S..4. In what follows we assume, for purposes of discussion, that the response

function h(t,) is identically zero for It-4I > T. Also, notice that there is

some ambiguity as to the time reference of the equalizer receiver output

relative to the transmitted signal. In fact, the determination of time

reference (timing phase) is a major concern for the implementation of both

linear and decision-feedback equalizers [23,46]. We adopt the common (24,44]

assumption that the time reference is chosen so that the output of the zero-th

tap, w0 , corresponds to the maximum channel output due to the desired data

bit, b0 . Under the above assumptions, the data sequence bL affecting the

receiver output U is given by

1b [K 2+1 bK 2 ... bK -

where IfK=E+1 2 +I is the total number of equalizer taps.

*1
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The matrix R in (5.3) contains elements which represent the combined

impulse response of the transmitted waveform v(t), the fading channel response

function h(tC), and the matched filter correlation receiver. Under the

adjacent-pulse-limited ISI assumption R is given by[R(-N,1), R(-N,0), R(-N,-1), 0 0, .... 0
0 R(-N+1,1), R(-N+1o0), R(-N+1,1), 0, .... 0

R. (5.4)

0 , 0 .... R(N,1), R(N,0), R(N,-1)

where

rT
)R(nk) h(nT, kT+4) d4 . (5.5)

The function R(.) in (5.5) is the aperiodic autocorrelation function of the

time-limited pulse waveform v(t) defined by (3.14a). It is common to

. represent the combined response of the transmitter, fading channel, and

receiver in this way. In fact, the rows of R are closely related to the '

discrete-time channel response functions discussed in [9] and the equivalent

tapped-delay-line model for doubly selective fading channels considered in

[101. Note that the first argument of R(n,k) denotes the value of this

integral for the channel response at time t = nT. The variation of the value

of (5.5) as a function of n is related to the time-selectivity of the fading

channel. For the present discussion we assume that the value of R(nk) is

independent of n for n e [-K1-i, [2+1].

One of the key characteristics of both HF and troposcatter channels is

that the response function h(t,4) is time varying. When the changes of the

characteristics of the response function are sufficiently rapid that the above

q/
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assumption does not apply, the channel is modeled as a time-selective fading

a channel [9]. Typically, the degree of time-selectivity is measured in terms

-( ." of the width of the Doppler power-density spectrum which is the temporal

Fourier transform of the function p(t-x..) defined in (2.4). Definitions of

this type which are commonly used in the published literature are the distance

between the lie points or the half-power bandwidth of the Doppler spectrum

(e.g., see [3,91). Alternatively, the time-selectivity of the WSSUS fading

- channel may be grossly characterized by the smallest value of v for which

p(VO) 0 0. This value, which is inversely proportional to the width of the

Doppler spectrum, is referred to as the channel "decorrelation time" (7,24].

Since both HF and troposcatter fading channels are time-selective to some

degree, a time-varying equalizer must be employed. For applications to WSSUS

fading channels, the equalizer must adapt to the time-varying characteristics

of the channel. One of the earliest applications of adaptive equalizers was

-. to high-speed data communications over switched telephone-line networks [22].

o, In this situation, the receiver is designed to adapt to one of a number of

links before the data is transmitted. Equalization of fading channels

,' requires continuous adaptation in step with the changing characteristics of

the fading channel. Moreover, it is crucial that the equalizer adapt in a

a '. time period which is much shorter than the channel decorrelation time. For

%.* . many applications, this implies that the decorrelation time must be much

larger than the data pulse duration T. Fortunately, this constraint, which is

referred to as a learnina constraint (40], does not preclude the use of

equalization techniques for most fading channel applications. Typical values

* of the decorrelation time are on the order of 103. T for HF systems and 107.T

for troposcatter links [7].> 9
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In order to reduce the effects of intersymbol interference, the tap-

weights w are adjusted (adaptively) to minimize some cost function which,

hopefully, is related to the resulting system performance. When the receiver

bases the binary decision for each successive data bit on a single sampled

output, the cost-function that is most often employed is the mean-square-error

(MSE) [8,23.44].

The consideration of the performance of adaptive equalization techniques

for slowly time-varying fading channels must, it seems, be based on the

following basic assumption. At each time t and for each sample function

h(t,g) of the channel impulse response, the TIL is adjusted in a manner such

that the equalizer is able to "track" the slow changes in the channel. In

this case it is not clear that knowledge of the channel statistics (zero-mean

Gaussian for a Rayleigh fading channel) can be utilized to obtain a meaningful

interim measure of system performance. On the other hand, if we assume that

the equalizer is unable to track the channel, then the TDL would only serve to

add additional intersymbol interference as well as correlated Gaussian noise.

In this case it is reasonable to assume that it would be better not to attempt

channel equalization.

Consider the receiver output U for a fixed channel impulse response

function h(.4 ), which is a function only of the relative delay . The mean-
N..N,.-

square-error (MSE), as defined for the consideration of fading channels

[8,24,45] and for the consideration of deterministic channels [45,471. is

given by

MSE = ER(IU - kV84 8ET b0 12) (5.6)

4..4

where E is the transmitted energy per bit and ER(. denotes the conditional

N. ~ N . N. . N . . N
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expectation given R. The expectation in (5.6) is taken with respect to the

data sequence b. for i#O and the additive noise samples _. The scale factor k

in (5.6) is a positive real constant which does not affect the form of the

minimum USE filter. Using the vector representation in (5.3) for U, we have

USE= E R w' R b + 2w' n- k VI b0 1 (57

If we assume that the data sequence is a sequence of independent, identically

distributed random variables taking on the values -1, +1 with equal

probability, (5.7) becomes

SE e R I R w + 8NoT.W'W + k2 .SET - ERe[-('R 5.8)
T - NT=0lk.ex%.?

,- . where

13 E (.,-K,), ...R. (,o), .... R (.,K 2y

% P ., It can be shown [23,44,45] that the solution for the USE optimum tap-weight

vector w is given by

kw' A R k( e' (5.9)

or

- w k.A -1  ,

where the Hermitian matrix A is written as

A= T - 1 + N . (5.10)

Using (5.9) and (5.8), the minimum USE (MMSE) is given by

N -SE k2 SET kBE. 6 A- £0 . (5.11)

'C.
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Alternatively, the WISE can be written as

"ISE = k28ET - k8E.Re(_w' R) (5.12)

Notice that, for a particular channel response matrix R, the second

moment of the filter output U (for b = 1) in (5.3) is related to the mean-

V:h. square-error by

.(Iu12) ISE- k28ET + l6kE.Re(w' R . (5.13)

.1-. Using the expression for the XKSE in (5.12) we have

ER(1U[2) = ISE - k28ET + 16kE.Ref_' R0}  (5.14)

.4O

E,. ER(U 2 ) - k8E.Re(w' R0 } > 0 . (5.15)

We have seen that the NSE or, in particular, the MUSE is related to the

second moment of the receiver output U (cf. (5.14)). It is tempting to

consider the possibility of characterizing an "average" KXSE by taking an

additional expectation with respect to the channel statistics. Using the

expression for USE in (5.8) and averaging with respect to the channel ensemble

* (WSSUS zero-mean Gaussian) we have

-SE = w' C W + 8NoTw'w + k28ET-

where the matrix g denotes the expected value of the quadratic form RR'. If

there is no additional restriction on w, then this implies that w = 0 produces

the minimum USE. Alternatively, if we insist that x'M = 1, then it is easy to

see, using an example where the fading channel is nonselective, that the above

minimization produces the wrong result.

• '9 . , -,7
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It is interesting to note that the last term in (5.8). which is also the

right-hand side of (5.15), is just a constant times the real part of the

output U due to the desired signal (corresponding to b0 -l). Then we see that

" (5.15) implies that the optimum tap vector X produces a "one-shot" receiver

Cresponse whose real part has non-zero mean-value. Hence, we see that a linear

TDL equalizer designed to minimize the USE, not only reduces the average

contribution of interfering adjacent data signals, but also provides phase-

coherence between the transmitter and receiver. Moreover, using (5.8) and

(5.15), it can be seen that for small values of E/N0, the linear TDL equalizer

: receiver is closely related to the maximal ratio diversity combiner for a

one-shot receiver [48] where the "diversity" links are produced by the time-

dispersive properties of the channel. In a frequency-selective fading

environment, the received signal can be characterized as the superposition of

delayed versions of the transmitted signal. Thus, the efficient combining of

. ..% these signal components at the receiver results in a potential for diversity

gain. The diversity that is due to the time-dispersive nature of the

frequency-selective fading channel is commonly referred to as "implicit"

diversity (25] as opposed to explicit forms of diversity which can be realized
%I

by redundant transmissions over channels separated by space, time, frequency,

or antenna polarization [6]. (Recall that maximal ratio combining is a

* linear, coherent diversity combining technique which achieves the maximum

possible output signal-to-noise ratio for a single data pulse at each sampling

instant.) If the matrix A in (5.10) is dominated by the term due to the

additive noise, and if the contributions from interfering data signals are

ignored, the statistic U in (5.3) becomes
6d

U ' .. .. .b. + 2y' a
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N(5.16)
0 71

With U defined in this way, the signal-to-noise ratio is given by

SNR E

N01
2  S

which is precisely the definition of the instantaneous signal-to-noise ratio

- for maximal ratio combining considered in [6] and E481 where the order of the

implicit diversity is related to the number of significant elements of X0. In

light of the relationship between a ISE linear IDL equalizer and coherent

maximal ratio combining, it is not reasonable to assume that it is

advantageous to consider signalling techniques other than coherent PSi. In

fact, it is well known that coherent binary PSi produces smaller error

probabilities than other common form of binary signalling (i.e., DPSK, and

coherent and noncoherent FSK) for maximal ratio combining in a Rayleigh fading

environment [6].

We have seen that for a given channel impulse response, the MMSE-TDL

equalizer allows the use of coherent PSI detection. Using the solution for

the SE-optimal w in (5.9) for k - 1, the random variable U in (5.3) can be

written as

u A# lX 7 b + 2 el I. (5.17)

where j, R, and A are all determined by the channel response function and the

statistics of the additive noise. Conceptually, the conditional bit-error
4..'

probability for a particular h(.,4) and a particular data sequence k can be

obtained by finding the signal-to-noise ratio and computing P (b)-Q(SNR/ 2 ).

where Q(x)=l-F(x): the standard Gaussian cumulative distribution function.

The average probability of error is then determined by averaging P (h) over

.9.°
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-S.. the possible data sequence combinations. Unfortunately, the evaluation of

Uboth the conditional and average error probabilities is quite cumbersome even

for non-fading channels and the results concerning the performance of IMSE

equalizers are almost always in the form of simulation studies [21,44]. An

exact evaluation of the average error probability for fading channels appears

hopeless, since, in this case, it is necessary to perform additional averaging

with respect to the channel response function h.

5.2 Decision-eu .4k Egualizer Characteristics

The receiver structure of a DFE is similar to that of a linear TDL

equalizer receiver with the addition of a feedback loop which forms a linear

7 "- combination of the values of previously detected data symbols [8,23,42,49,50].

(The nonlinear nature of the equalizer is due to the effect of the hard

decisions used to form the output of the feedback section.) The device used

.4 *. to form the feedback output D can be (and usually is [8]) represented as a*1

linear 7DL with tap spacing necessarily equal to the data symbol duration T.

If we assume the current decision concerns the zero-th data bit bo, the output

Sof the feedback section of the DFE is given by

Dr1 di b -i (5.18)

where N is the number of feedback taps and is the value of the decision on

" the i-th data bit. Using vector representation for the parameter D. the

.:: .' 'expression for the decision statistic U for a DFE can be written as

T w 2 q , (5.19)

V, where 4'- dN,...,dlJl and -b . .bN* Notice that there are now Ki+
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1 taps for the linear TDL portion of the equalizer so that K2=0. The matrix .

If in (5.19) is obtained from (5.4) by deleting the last K2 +1 columns and the

last K2 rows of the original channel response matrix.

The USE criterion for the DFE is defined similarly as for the linear 7DL

equalizer and is based on the assumption [8,24,44] that the previously

detected symbols in the feedback filter are correct, i.e., . = b. for i(O.

Using this assumption and the definition in (5.6), the MSE for the DFE is

given by

MsE- Ef I f gfib + ,'. d + 2w -k .b0 12)
f

Minimization of (5.20) with respect to w shows that the linear TDL that

* minimizes the MSE is given by the relation [44]

Z' Af w k. Re(!' if0}

or
k-A Rf (5.21)

fkA f0-F

-" where the matrix Af is

If zi + YT (5.22)

f• E

The coefficients of the DFE are then chosen so that the resulting output D

exactly cancels the intersymbol interference due to previously detected

symbols or "precursors" [23]. In this case, the coefficients di can be

written in terms of the coefficients of the linear TDL section by

A- ' 1 (5.23)J..'s

where the matrix is obtained from (5.4) by deleting the first K2 columns "4p

and the first [2+1 rows of j.

• '~~... .......... . ... . ........... , ..-... ..- . . . ....-.--.... -. ,..... .. ;....;,-.,-
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For any practical implementation of DFE receivers (especially for

Rayleigh fading channels) it is not reasonable to assume that all previous

data decisions are correct. Moreover, in the case when a decision error is

made, the output from the feedback portion of the equalizer adversely affects

subsequent decisions causing error propagation. For nonfading channels, the

increase in the average error probability due to this effect is considered in

(20] using a Markov chain model. The analysis is carried out under the

'i . assumption that the tap weights for the linear TDL forward filter are chosen

according to a zero-forcing (ZF) criterion (22,44]. The ZF cost function is

closely related to the definition of the ESE in (5.7) by neglecting the term

* corresponding to additive channel noise. The zero-forcing criterion is simply

*q J. the requirement that the intersymbol interference contribution at the output

-. of the forward filter is forced to zero, at the cost of an enhancement of the

additive noise. It should be pointed out that the zero-forcing criterion is

not generally applicable to fading channels since ZF can be achieved only for

channels with limited intersymbol interference [44]. Assuming ideal DFE

* characteristics and a particular nonfading channel response function, it is

'1 , shown in (20] that error propagation is not a major source of degradation for

S' typical values of signal-to-noise ratio and channel characteristics. AAP
-similar conclusion is obtained in [40] where a simulation study of the error

propagation effect is carried out for a single-echo and an exponentially

decaying multiple echo channel model.

From the discussion of linear TDL equalizer characteristics in Section

* 5.1. we see that the forward filter portion of the DFE has the potential of

~providing a degree of implicit diversity gain as well as some reduction of the

V. effects of intersymbol interference, at the expense of an increase in the

I OP
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effective noise power. In contrast, the feedback portion of the DFE is

designed to eliminate the distortion due to previously transmitted data

signals at the expense of a loss of diversity gain and some degradation due to

error propagation. Hence, the DFE receiver can be viewed as a compromise

between these two configurations.

Finally, we point out that for both linear TDL and DFE receivers, the

ability to track the channel characteristics strongly depends of the available

signal-to-noise ratio (44]. Clearly, if the received signal is dominated by

the additive noise, there is little hope of maintaining equalization. In a

-a.
Rayleigh fading environment, the instantaneous SNR can fall below the level

necessary to maintain equalization so often that the equalizer performance is

severly degraded. In order to overcome this difficulty, practical DFE modems

are designed to process signals received from L explicit independent diversity

links [23]. This is accomplished by employing a separate forward TDL filter

for each of the L explicit links, appropriately combining the forward filter

' outputs by means of automatic gain control devices, and using a common data

a,,., pulse filter and feedback loop TDL to process the combined output of the

forward filters.
'.

5.3 PIl foaace Consideritions

The published analytical work on the evaluation of the average bit-error

probability for DFE receivers in frequency-selective fading is almost entirely

due to Monsen [24,40]. The analysis in [24] is carried out for a system

without explicit diversity and is based on the fundamental assumption that the

feedback portion of the equalizer precisely cancels the intersymbol

interference due to pulses transmitted prior to bo (the desired bit). Under

V.. . . ...
.. . . ... _. _-., - a -,-.., -,., a ,, ', .: ,, -' ,'. ,\ -,' "','.V . ..'. * .] .."t
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this assumption, it is easy to see that the resulting analysis is independent

of the parameters of the feedback portion of the equalizer. Hence, the

development in [24] can be viewed as an analytical technique that can be

applied to linear TDL equalizers.

U" Notice that the receiver output U in (5.3) can be written as

"-T U 0 fobo + I' £ff + 2w'n (5.24)

, . w ef and f are obtained by deleting the column of Rf and the entry of bf

corresponding to the desired bit b0 . The first term of (5.24) then denotes

the desired signal component. the second term is the output due to interfering

signals, and the last term is due to the additive channel noise. In [24],

Monsen approximates the interfering data bits bi for i ) 0 as independent

zero-mean complex Gaussian random variables with variance y2 . (Recall that

the intersymbol interference due to previous data pulses is assumed to be

eliminated by the feedback portion of the equalizer.) With the intersymbol

interference from future data pulses modeled as additive Gaussian noise, the

minimization of the MSE with respect to the coefficients of the forward filter

yields

m B w = k.Re(w' If0]
*' .4

.- where the matrix B is given by

n -r 7  i (5.25)
.'-.'

NN

, Substituting the solution for the MUSE forward filter tap weights into (5.24),

the statistic U becomes

. U + V + + 2R In_ . (5.26)/f%

-4 d ."% ' " •*'."% ._%""""''2 -'"" .- ' . % ' ' ."-.-. .' . ' ' . • .-.-. ,
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Under the Gaussian noise characterization for the interfering data

pulses, we see that the last two terms in (5.26) represent the contributions

due to additive noise. Monsen defines an "equivalent signal-to-noise ratio"

as

8E (loj1 RfO0)2
-yNR - .T-'..

8NoT Ri0 R !f0

0NoT 12 Rio B I  f0 (5.27)-.

which is the ratio of the output due to the desired data pulse to the average

of the output due to both interfering data pulses and additive noise. Hence,

we see that the intersymbol interference has been replaced with interference

due to additional additive Gaussian noise.

The second approximation employed in (24] is to replace the matrix B by

its mean value, E(B}. However, even with these simplifytng assumptions, it is

still necessary to find the eigenvalues of the correlation matrix E(Rf0Rj0 ] of

zero-mean correlated complex Gaussian random variables with means and

covariances that depend on the channel response function h(., ). When the

eigenvalue distribution is obtained for a particular channel realization, it

is then necessary to find the coefficients of a partial fraction expansion of

a polynomial in the eigenvalues. The variance y2 of the interfering data bits

is chosen in [24] to be 0.5 to allow the best agreement between calculated and

simulated results.

Since, in reality, the average bit-error probability is dominated by the

probability of a wrong decision for the worst case intersymbol interference,

it would be useful to supplement the analysis in [24] by characterizing the

& ... LLA.o.



Tir- -. -:7

127

receiver output U for the worst-case data sequence. Using (5.24) we have

U 0 b M+ Af It'R 2w'n *(5.28)

so that w'(gfo + Rf 5) represents the sampled output of the receiver for a

particular data sequence. If we assume h(.,g) = 0 for 141 > T and that the

forward TDL filter consists of only 2 taps, (R + R ) is given by

bR.-) F 2R(.,1 +- b 1 (R.O) 5.9

[R0.0) b 1R(,)]

Unfortunately, even for this simple example it is not clear that the worst

case interference and the resulting effect on the error probability can be

adequately characterized.

5.3.1 Nonselective Fading Channel Approximation of DFE Performance

4 .- Since the forward TDL equalizer in each explicit diversity branch is

assumed to achieve coherence with the channel, an interesting approximation of

DFE system performance (which proves to be a reasonable estimate of the

performance of practical DFE receivers) is the error probability of coherent

PSK for maximal ratio combining of independent nonselective Rayleigh fading

. channels. If L denotes the order of the explicit diversity, the probability

of error of maximal ratio PSK is given by [6],

PcL l 
- J Q(f 2-s)-fL(s)ds (5.30):.• 0

where s is the instantaneous combined signal-to-noise ratio and f ~)is the

probability density function of s for diversity L. Assuming identical

diversity branch statistics (i.e., average branch signal-to-noise ratios), the

' .. '.'. . . '.., ' -'._. .'... -.. %.'.'. 'a.. 'o "."..# .' • '.. - . .. A -* .. -' . -' .- .. ".' ' . ... ' ' -' % . . ' .. °.' .2C . .. i%- -**'*** -'.. '.
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probability density function f is [6]

L s 1 L- ,exp(-s/S) , (5.31)

where the common per branch average signal-to-noise ratio S=2o2 E/N0. The

results of the computation of PC as a function of S are shown in Fig. 5.2
for diversity L = 1, 2. and 4. As a comparison for the results in Chapters 3

and 4 for the case of diversity reception, the error probability for square

law diversity combining of DPSK in nonselective Rayleigh fading is also shown

as a dashed line for the same orders of diversity. When the decision

statistic for DPSK signalling is of the form of Z in (3.5), "square law"

combining should be viewed as quadratic form combining (see [6]) of the

received signals given by the sum of L independent variables Z for n1i,L

[17]. Since DPSK signalling can be represented as a particular form of

orthogonal signalling on the interval [0,2T], this quadratic-form combining,

which is the optimal combining technique for DPSK in Rayleigh fading if no

channel estimate is available, is equivalent to square law combining of the

orthogonal signals. It can be shown, using the results in [6] or [48], that

the average error probability for square law DPSK in Rayleigh fading is given

by

Pd M L (1-Pe)n C(L-l+n,n) (5.32)

where Pe=(2+2S) is the average error probability for DPSK in nonselective

Rayleigh fading (cf. (3.18)), and C(m,n) is the binomial coefficient. The

corresponding result for orthogonal FSK can be obtained from Fig. 5.2 by

finding the value of the error probability corresponding to a 3 dB reduction

of signal-to-noise ratio S. The effect of the limiting error probability on

the square law diversity performance of DPS[ and FSK can be approximately

A."j
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P d (L)
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Signal-to-noise ratio, S (dB)

ii Figure 5.2. Probability of error for maximal ratio PS[ and square law DPSK for
S diversity L vs. per branch signal-to-noise ratio, S
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determined by finding the irreducible error probability for a particular value

of rms multipath spread p from Fig. 3.3 or Fig. 4.3, which is the exact result

for L=l. The approximation of the limiting error probability for L=2,4 is

then obtained by finding the corresponding value of S for the square law, L=1

curve and determining Pd(L) with L=2 and L=4 for this value of S.

5.4 Simulation and Experimental Results on DFE Performance

5.4.1 Simulation Results

One of the earliest published records of computer simulation results for

the performance of DFE for fading channels appears in [231. For this

simulation study, the Rayleigh fading channel is modeled with a rectangular

delay power-density spectrum (cf. (2.16)) with the parameter TO ranging

between 0 and 0.5/T where T is the data pulse duration. Notice that for all

values of To  considered in this simulation, the frequency-selective channel

satisfies the adjacent-pulse-limited ISI assumption for the received signal

prior to equalization. From the definition of the rms multipath spread A in W __

• . thsJcresodtomltpt

Chapter 2, we see that these values of T0 /T correspond to rms multipath

spreads ranging from zero (i.e., nonselective fading), to a maximum value of

0.3 for T = 0.5/T. The simulation is carried out for a DFE consisting of a

" single three-tap forward filter with data pulse interval tap spacing, and a
.1*

three-tap feedback filter (i.e., KI+l = N = 3). The results of this study

of the multipath signal components can be realized in a simulated fading

environment. This implicit diversity gain produced error probabilities less

- than the probability of error for coherent detection in nonselective fading
V

(i.e., Pc) by an order of magnitude at S =10 dB (representing a gain of 12

-..
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dB), and more than two orders of magnitude at S - 15 dB (for a gain of more

than 20 dB) for an rms multipath spread of 0.3. The results in [23] also

indicate that significant reduction in error probability (an order of

magnitude for S = 15 dB) is achieved for values of p as small as 0.18. For

smaller rms multipath spreads (i.e., p < 0.05), the reported error probability

is closely approximated by P and is upper bounded by Pc for all values of p

considered. It is interesting to note that the results in Chapter 3 indicate

that for this channel model the irreducible error probability of rectangular

pulse DPSK for p - 0.3 is approximately 6x10 2  and that the average

" .- probability of error for DPSK is about 10-2 at S = 15 dB, even for

nonselective Rayleigh fading. In contrast, no limiting probability of error

was exhibited in the DFE simulation for error probabilities as low as 10-6
.

In [24] simulation results are reported for an explicit diversity

application of a high speed ( 10 Mbits/second) troposcatter system described

*; -.. "in [511. The DFE modem was designed to employ rectangular pulse quadriphase

"" shift keying (QPSK) and accommodate up to four independent diversity channels,

" -each with a forward TDL filter of three taps spaced at one-half the data

*, .' symbol interval T. The outputs of the forward filters are coherently combined

and used as the input to in-phase and quadrature filters, each of which are

followed by a three-tap feedback TDL with symbol-interval tap spacing. The

simulation consisted of measuring the average bit-error probability

S- performance for a prototype modem using a troposcatter ;,,nnel simulator. The

channel simulator is realized as a TDL filter with tap-weights driven by the

I outputs of Gaussian noise generators so as to realize a random channel with a

* fixed rms multipath spread for each simulation. Using this configuration,

simulation results are obtained for values of rus multipath spreads as large

Q'°
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as 0.6 for diversity L-2 and 0.95 for diversity L=4. While the delay power-

density spectrum model for the channel simulator is not explicitly discussed,

it is reasonable to assume that a channel with a rectangular delay spectrum is

employed since this model is used in [23], and the TDL channel simulator is

most easily implemented for this model.

The results indicate that for dual diversity (L=2), and signal-to-noise

ratios of less than 20 dB, the lowest error probabilities are obtained for rms

multipath spreads between 0.25 and 0.4. For these values, it is shown that

the DFE modem produces error rates which are lower than Pc(2) by a factor of

ten at S = 15 dB (for a gain of 5 dB), and an improvement of nearly two orders

of magnitude at S = 20 dB (representing a gain of 10 dB) for S = 20 dB. In

contrast to the results cited above, this simulation study establishes theS-I

existence of an irreducible error probability of approximately 10-6 for P =

0.6 and 10- 8 for p = 0.45. In comparison, the results in Fig. 3.3 and Fig.

5.2 for L = 2, indicate that for g = 0.45, the irreducible error probabilities

for both rectangular pulse DPSK and sine pulse DPSK are about 3x10 2

representing an equivalent per branch average signal-to-noise ratio of

approximately 8 dB.

For fourth-order diversity, simulation results are obtained for values of

p as large as 0.95. As in the dual diversity simulation, the smallest average

error probability is obtained for an rms multipath spread of about 0.45. In

this case the resulting error probability is shown to be less than P (4) by

more than an order of magnitude for S = 10 dB (a gain of 3 dB) and about two

orders of magnitude for S = 15 dB (a gain of 5 dB). For one simulation of

fourth-order diversity, an irreducible error probability of about 10- 7 was

obtained for an rms multipath spread of 0.45. In comparison, the

.1s
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approximation of the irreducible error probability for DPSK with L=4 is about

S 2x10 -3 , so that the use of DFE and coherent detection provides a reduction of

. -. more than four orders of magnitude for the limiting error probability in

similar fading environments.

5.4.2 Results of Experimental Studies

In [14], live link test results are reported for the DFE modem described

S.in [511 and used in the channel simulator studies cited above. In this test,

the DFE modem was operated in both dual (L2) and quadruple (L=4) diversity

configurations and for two test "channels" with distinct fading

-, characteristics. The two "channels" each consisted of a radio-frequency (RF)

transmitter, fading channel, and an RF receiver producing an intermediate-

frequency output (forward-filter input) for each diversity branch. The two

channels considered in the test were the 900 MHz and 4.5 GHz troposcatter

radio systems at the Rome Air Development Center test facility. The multipath

profiles for these channels were measured with a channel probe using an m-

sequence coded sounding signal. It was found that the delay density followed

...,% a basic triangular shape (cf. (2.14)) and that the shape of the delay density

did not vary greatly from test to test (with the exception of the 900 MHz

channel where a secondary triangular "hump" was occasionally observed). Data

are presented in [14] for the 900 MHz channel with a measured rms multipath

* spread of p-0.45, and for the 4.5 GHz channel with p measured as approximately

0.35. The probability of error for the DFE modem was measured by the bit-

error rate averaged over twenty-minute periods as a function of the median

* ~ received signal-to-noise ratio. In what follows, the performance of the DFE

modem is discussed in terms of the mean value of the measured error

'4
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probabilities as a function of the per channel signal-to-noise ratio. It

should be pointed out that the results in [14] exhibit sample points that vary

from this mean value by as much as a factor of ten for a particular measured

. signal-to-noise ratio.

71
For all cases reported in [14], the test results show major discrepancies

between measured DFE modem performance and the results of simulation studies

discussed above. In particular, for the 900 MHz channel and dual diversity,

test results are reported for measured signal-to-noise ratios ranging from 5

to 17 dB. These results indicate that the DFE modem error probability is on

the average slightly larger than Pc (2) for signal-t -noise ratios less than

about 15 dB (differing by at most a factor of three at S = 5 dB, indicating a

SNR degradation of about 5 dB). For S = 17 dB, the average error probability

for the DFE modem was approximately equal to P (2). Similar results were

obtained with dual diversity for the 4.5 GHz channel with measured rms

multipath spread 0.35. For this channel, test results are reported for

signal-to-noise ratios ranging from 15 to 22 dB. The measured DFE error

probabilities are slightly larger than P (2 ) for S < 20 dB, and differ from

:.4.'-.. Pc(2) by less than a factor of two for the entire range of signal-to-noise

ratios reported.

The test results for fourth-order diversity show that Pc (4) is an

excellent approximation of DFE performance for both channels considered. In

particular, for the 900 MHz channel (g-0.45), the results show that the

average measured DFE error probability is between Pc(4) and 2xPc (4) for all

4. reported values of signal-to-noise ratio (0-15 dB) which corresponds to a

971 degradation of less than 3 dB. Similarly, test results for the 4.5 0Hz

channel (I-0.35) show that the measured average error probabilities lie

s%.0
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between 1.2xP~ (4) and 3xP0 (4) for all signal-to-noise ratios which range

S between 5 and 17 dB for this channel.

The basic conclusion that can be drawn from the above experimental

* results is that the average error probability for maximal ratio PSK is a

reasonable estimate of the performance of decision-feedback receivers for

practical fading channel communication systems. This is in stark contrast to

the implications of the simulation results which show that in certain cases.

the DFE can realize error probabilities two orders of magnitude lower than

c C(L), even in the case of no explicit diversity (L-1). It is reasonable to

%' assume that some of the discrepancy between predicted and measured performance

is due to the less than ideal characteristics of the RF transmitter and

~. - receiver employed for the experimental studies. However, by examining some of

the very basic limitations of equalizer performance, it can be seen that the

results of the simulation studies can be characterized as "optimistic.TM

Recall, from the discussion in Section 5.2, that the feedback portion of

the DFE receiver is designed solely to eliminate the intersymbol interference

due to previously transmitted data signals. Hence, the implicit diversity

gain can only be realized by the coherent combining properties of the forward

ThL filter. Thus, the potential for diversity gain with respect to the

decision on the desired data bit, b 0 is characterized by the vector Rf0 (cf.

(5.24)). For the example of a rectangular delay delay power-density spectrum

(2.16) with parameter T 0=T/2, which corresponds to the channel considered in

'Si (231, Jf consists of only two entries, R(.,-1) and R(.OM, which are Gaussian

"4*4

41% random variables, linearly related to the response function h(.,C) through

Zo a." tai
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components of Rfo are related by

14.E(R2 (.-1)) - E(R2 (.,0))

In general, the random variables R(.,-1) and R(.0) are correlated Gaussian

random variables by nature of the overlapping portions of the rectangular

pulse autocorrelation function. However, in order to characterize a lower

bound for DFE receiver performance, we proceed under the assumption that

R(-,-1) and R(-,O) are uncorrelated and hence independent. (It is well known

[6] that correlations among diversity links can only degrade the performance

of maximal ratio diversity systems.) In this case, the error probability for

maximal ratio PSK is given by (5.30) by neglecting the parameter L, where the

probability density function of the instantaneous signal-to-noise ratio s is

given by

f(s) = 14- [exp(-s/S) - exp(-14s/S)]13 S

and where S is the average signal-to-noise ratio corresponding to R(.,O).

Calculation of the integral in (5.30) for this density function of s shows

that for S between 10 and 30 dB, the maximal ratio error probability lies

approximately mid-way between the curves corresponding to Pc(l) and Pc(2)

shown in Fig. 5.2, and obtains a value of 5.4xlO-6 for S = 30 dB. Hence, we

see that even under ideal conditions, the effective order of implicit

diversity is between one and two. Moreover, it is not likely that the actual L,

DFE performance would reflect much of this potential diversity gain since i)

in reality, the implicit diversity branches are correlated, ii) the one-shot

UNSE forward filter approaches the maximal ratio combining filter only
ba

asmantoticallv for small signal-to-noise ratios, and iii) the NMSE forward

filter tap weights are largely determined by the character of the intersymbol

................................................... .. ,.......-....
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interference, especially for high signal-to-noise ratios. Thus, second-order

diversity may be considered to be a gross upper bound for the effective order

of implicit diversity for this example. In contrast, it is claimed in [23],

that results of the simulation study for this channel model show that the DFE

. , receiver realizes an implicit diversity order of approximately four. The

discussion above and the results of experimental studies in [14] show that

this is not the case.

We conclude that while some potential for implicit diversity gain does

exist, it is not a significant factor for lEASE decision-feedback equalization.

Rather, the main attributes of decision-feedback equalizers are the ability to

establish a coherent communication environment, and the substantial reduction

of the effects of intersymbol interference for practical systems within the

-- limits of the capabilities of the equalizer. Thus, for a given order of

"$' .~ explicit diversity L, the performance of DFE receivers in frequency-selective

" ":"" . . Rayleigh fading channels is both easily and accurately approximated by the

average error probability for maximal ratio PSK defined in (5.31).

5.5 Additional Considerations
" ,, .. -

-There are, of course, a number of design problems associated with the

. I implementation of adaptive equalizers which largely determine the

effectiveness of the equalizer. The aspect of equalizer implementation which

.o most profoundly affects system performance is the realization of the algorithm

used to adaptively adjust the coefficients of the TDL filters. In practice,

the equalizer, and, hence, the tap-adjustment hardware, is designed to operate

in two modes. At the start of operation, a known data sequence or training

sequence is transmitted to allow the receiver to adjust to the initial state

.. of the channel. The required length of the training sequence depends on the

S4°
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total number of equalizer taps, the characteristics of the channel, and the

speed of convergence of the adjustment algorithm [23,44,52]. At the end of

the start-up mode, the receiver uses the results of previous data symbol

. decisions to continuously update the tap coefficients [40,443. Thus, the

primary performance criteria for tap-adjustment algorithms are the speed of

convergence, the sensitivity to occasional decision errors, and the complexity

or cost of implementation.

The most commonly implemented adjustment algorithm for both linear TDL

and decision-feedback ESE equalizers is a form of stochastic gradient or

*. steepest descent algorithm [23,49,50]. In this implementation, the tap-vector

* w is recursively adjusted according to the relation

k+I = wk + ASk]Zk

- where U is the vector of received samples U given by (5.3), ek is the

'k

difference between the k-th output and the decision on the k-th output, and A

is a scale factor which must be chosen small enough to ensure equalizer

" .convergence [44]. While the steepest descent algorithm has the advantage of

ease of implementation, it is characterized by a slow rate of convergence

[471. It has been shown [533 that steepest descent algorithms require

training sequences of length lOxN, where N is the total number of equalizer

taps. A primary constraint for the equalization of fading channels is the

need to track the sometimes rapidly varying channel. For applications to

Rayleigh fading channels, it is necessary to insert training sequences at

periodic intervals to ensure stable equalizer operation. For example, in [8]

the results of a simulation study of a DFE consisting of ten forward and ten

feedback taps with no explicit diversity are presented. The study was

*:. .. . . . . ... .. .. ....................... •.... .......... % .'-'';',, ''i -;',
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implemented using a channel simulator to realize a channel with average

U decorrelation time on the order of 10 data pulse durations. In order to

*t, *. maintain channel equalization, it was necessary to insert a 100-bit training I
sequence at 2000-bit intervals in the data sequence.

The slow rate of convergence-of the steepest descent algorithm is a

limiting factor in determining the applicability of adaptive equalizers

implementing this algorithm. Within the last decade, a number of studies have

been directed toward finding rapidly converging algorithms that can be

implemented with minimum additional complexity [47,53-56]. Of these, the

" * algorithms that have received the most attention are those derived from the

work of Godard [53] who first applied the Kalman estimation algorithm to the

problem of equalizer adjustment. These investigations show that it is

possible to obtain near MSE-optimal equalizer adjustment using training
sequences of length N, where N is the total number of equalizer taps [54].

.' .'- Moreover, it is suggested that equalizer adjustment algorithms of this type

are capable of tracking the occasionally rapid changes experienced in a fading

"environment. The two main disadvantages of these algorithms are additional

sensitivity to additive noise [44] and increased complexity [44]. The

-. 4
additional computational burden for even the most efficient of these

0 4 algorithms is roughly 2N times the complexity of steepest descent algorithms

4, ..- for an N-tap equalizer.

-p
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CHAPTER 6

SUMMARY AND CONCLUSIONS

In this thesis, we have investigated the effects of frequency-selective

fading on the average probability of error for DPSK and FSK communications.

By considering the effects of frequency-selective fading in both the frequency

domain and the delay domain, we have examined the interaction between the

4. characteristics of the fading channel, the transmitted signal, and the
.. .- '

quadratic nature of the detection process employed for DPSK and noncoherent

FSK communications. We have identified the system parameters that are of

fundamental importance in determining the average error probability. It has

been shown that the performances of DPSK and FSK can be approximated in terms

of one or two parameters that can be obtained from rms-type channel

measurements. Lastly, we have examined the basic limitations of equalizer

performance and have developed a method of obtaining estimates of adaptive

i,... 'equalizer performance for practical systems. .

The analysis of DPSK and FSK for several examples of multipath models

(delay power-density spectra) leads to several conclusions. For DPSK systems,

the average error probability as well as the irreducible error probability

strongly depend on the shape of the data-pulse waveform. These examples also

indicate that the lowest error probabilities are obtained when small time-

bandwidth product pulses are employed. In particular, the sine-pulse, which

is the smallest time-bandwidth product pulse waveform considered [39], also

produces the lowest error probability of any pulse shape considered. Large

time-bandwidth product pulse shapes (e.g., phase-coded pulses generated by ar-

sequences) exhibit increased sensitivity to the effects of intersymbol

U---- .1
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interference as well as larger error probabilities for practical values of

signal-to-noise ratio.

Similar conclusions apply to the relationship between the data-pulse

shape and the probability of error for FSK systems. In addition, the

modulation index as well as the relative phases between successive transmitted

signals play an important role in determining the system error probability.

The lowest error rates for FSK are obtained for continuous-phase signals with

small modulation indices.

Comparing the results for DPSK and FSK, we find that the error

-aprobabilities for these systems depend on a number of common factors, and in

certain cases, the effects of frequency-selectivity on both DPSK and FSK

systems can be characterized by the same parameter. A technique for obtaining

bounds on system performance in terms of the key system and channel parameters

applies to the evaluation of both DPSK and FSK systems for the several

examples of channel models and signaling formats. Finally, the error

probabilities for systems employing complicated pulse shapes and for channels

which are difficult to fully characterize can be predicted from the key system

-', .%, parameters and the performance data contained in this thesis.

For channels with rms multipath spreads less than about 0.1, it i-

possible to substantially reduce the irreducible error probabilities for both

DPSK and FSK systems by choosing system parameters which minimize the

sensitivity to intersymbol interference. However, for many practical systems

the effects of ISI can severely limit the performance of these forms of

digital communications. In Chapter S, the characteristics of adaptive

equalizers commonly employed for fading-channel communications are described

an.. t
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" . It is revealed, that while claims of "implicit diversity gain" abound in the

literature, the significant attributes of adaptive equalization techniques art

the ability to establish a coherent communication link and the substantial

reduction of the effects of intersymbol interference. Comparing the results

of simulation studies and experimental investigations of equalizer performance

with the analytical results for the error probabilities of DPSK and FSK

systems reveals that reliable communications can be achieved through channel

equalization even in fading environments that produce unacceptably high error

probabilities for unequalized systems.

It should be pointed out that one of the factors limiting the implicit

diversity gain for signals with small time-bandwidth products is the inability

to resolve the multipath components in the received signal. For rectangular

data pulse waveforms with duration T, it is clear that signals arriving at the

receiver with relative delays of less than T seconds cannot be resolved into

independently faded components. In fact, for WSSUS fading channels, the

statistical correlation between signals received with relative delay 4 is

completely determined by the product of the delay power-density spectrum and

the autocorrelation function of the data pulse waveform evaluated at .

Within the last five years, there has been considerable interest in the .

application of equalization techniques to both coherent and noncoherent

spread-spectrum communication systems employing phase-coded waveforms. The

analysis [57] and test results [58,59] indicate that the use of this type of

signal with large time-bandwidth product allows resolution and coherent

(maximal ratio) combining for both HF and troposcatter channels. The4,-.

development of useful bounds and approximations of the performance of adaptive

equalizers for both spread-spectrum and conventional communications in

!AL-
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- ~ frequency-selective fading channels is an area where much further work is

F needed.

The current interest in applications of adaptive equalization techniques

to digital communications over frequency-selective fading channels is in large

part due to the well-documented effectiveness of these techniques in nonfading

systems. While it is true that reliable communications can be achieved

-.. through the use of adaptive equalizers, it is not clear that channel

-.. . equalization is the most efficient way to reduce the effects of intersymbol

interference. Unfortunately, the published literature is void of the
... ,

Ed .consideration of alternative techniques that could be used in practical

systems to obtain acceptable performance.

One example of a possible alternative which deserves consideration is the

5 use of M-ary orthogonal signalling in conjunction with error correcting codes.

In particular, suppose that the source data rate R = 106 bits/sec and the

channel rms delay M = 3xlu 5 sec are fixed design parameters. Hence, for

binary signaling the rms multipath spread 12 = M/T = 0.3. If 8-ary orthogonal

L-. ,FSK is used to transmit the binary data, the effective rms multipath spread is

reduced to g. = 0.1. Unfortunately, the evaluation of the probability of

-_ error for M-ary orthogonal FSK in frequency-selective Rayleigh fading is at

present an unsolved problem. While it is true that the introduction of an

error-correcting code has the effect of increasing the channel data rate (and,

hence, increasing the effective rms multipath spread), it may be possible to

A ' realize error rates significantly lower than those achieved through adaptive

channel equalization. The investigation of alternative methods of achieving

LA reliable communications over frequency-selective fading channels is an area

4% ,* which appears to be both promising and challenging.

,
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